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Executive Summary

By mid-2024, artificial intelligence large language models (LLMs) were running into 

diminishing returns to scale in training data and computational capacity. LLM training began 

to shift away from costly pre-training to cheaper fine-tuning and allowing LLMs to ‘reason’ for 

longer before replying to questions.

Fine-tuning uses chain-of-thought (CoT) training data that includes questions and 

the logical steps to reach correct answers. This increases the efficiency of learning for smaller 

AI models, such as DeepSeek. CoT data can be extracted from large ‘teacher’ LLMs to train 

small ‘student’ models.

These changes shift the cost structure of AI models from high pre-training costs to lower 

fine-tuning costs for model developers and more inference costs for users. While smaller 

models are cheaper to use, a positive AI demand effect is likely to exceed the negative price 

effect. Price competition between models will increase, resulting in tighter margins for AI 

firms. Specialised models can still fetch premium prices. 

Cheaper LLMs are an opportunity for European Union companies to catch up in building 

smaller AI models and applications on top of LLMs. Increased demand for AI services will 

require more investment in computing infrastructure, including in the EU. Investing in 

large LLMs and the corresponding hyperscale infrastructure is riskier, especially as price 

competition between models increases.

Knowledge extraction between AI models puts pressure on model developers 

to protect their investments against free-riding by others. It also creates a dilemma for 

policymakers: should they favour free-riding to promote competition and innovation, 

or should they clamp down and reinforce monopoly rents to stimulate investment in AI 

models? Past policy will not be an appropriate response in a world that offers vastly expanded 

opportunities for knowledge pooling and innovation at lower cost.
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1 Introduction: enter DeepSeek
The start of 2025 was marked by several major announcements related to artificial 

intelligence. The release of the DeepSeek (2025) AI model on 22 January blew a trillion-dollar 

hole in the stock market1, on the basis that China’s DeepSeek would substantially undercut 

American AI giants. DeepSeek was soon followed by many copy-cat small and cheap AI 

models. Markets concluded somewhat prematurely that DeepSeek broke the AI model scaling 

law and would undermine the rationale for heavy investment in AI computing infrastructure.

But can small AI models really perform as well as big models, without access to huge 

quantities of the expensive Nvidia AI processor chips that dominate the sector? Big-tech AI 

firms were not impressed by this market turbulence and doubled down on their AI infrastruc-

ture spending2. Just a week before the DeepSeek release, OpenAI and Oracle announced a 

$100 billion to $500 billion AI infrastructure investment – dubbed Stargate – to catch up with 

big-tech firms3. Two weeks later, the European Union announced its own €200 billion AI 

investment initiative4. 

This Policy Brief aims to go beyond the DeepSeek hype. It analyses innovations in AI 

models over the past half year and examines the economic implications for AI companies and 

policymakers, in particular in the EU. It argues that DeepSeek is innovative, but in line with 

model evolution over the past half year – not an unexpected revolution. It still fits into the 

‘transformer’ generative AI or large language model (LLM) paradigm of the last eight years 

(Vaswani et al, 2017).

Nevertheless, it has set in motion major changes in AI business models. The cost structure 

of AI models has shifted away from upstream pre-training costs towards more downstream 

fine-tuning costs for model developers and more computational ‘reasoning’ or inference 

costs to respond to the queries of end users. Moreover, AI models are increasingly free-riding 

on, and extracting knowledge from, each other. Price competition between AI models has 

further increased because smaller models are cheaper to operate. End-user costs per token5 

have dropped precipitously, making it more difficult for AI companies to extract revenue and 

make a profit from AI services. This creates a dilemma for AI developers. Should they protect 

their models against free-riding by others, if at all possible, or should they resolutely go for 

more innovation to stay ahead of competitors?

All these changes may create opportunities for EU innovators to catch up in the global AI 

race. EU policymakers should support smaller AI models, built on top of large models, to reap 

innovation and productivity gains from AI, without risky investment in large foundational 

models.

1	 Sinéad Carew, Amanda Cooper and Ankur Banerjee, ‘DeepSeek sparks AI stock selloff; Nvidia posts record market-

cap loss’, Reuters, 28 January 2025, https://www.reuters.com/technology/chinas-deepseek-sets-off-ai-market-

rout-2025-01-27/.

2	 Mike Isaac, ‘Meta to Increase Spending to $65 Billion This Year in A.I. Push’, New York Times, 27 January 2025, 

https://www.nytimes.com/2025/01/24/technology/meta-data-center.html; Jordan Novet, “Microsoft reiterates plan 

to invest $80 billion in AI, but may “adjust our infrastructure in some areas”’, CNBC, 24 February 2025, https://www.

cnbc.com/2025/02/24/microsoft-reiterates-plan-to-invest-80-billion-in-ai-.html.

3	 See OpenAI press release of 21 January 2025, ‘Announcing the Stargate Project’, https://openai.com/index/

announcing-the-stargate-project/.

4	 See European Commission press release of 11 February 2025, ‘EU launches InvestAI initiative to mobilise €200 

billion of investment in artificial intelligence’, https://ec.europa.eu/commission/presscorner/detail/en/ip_25_467.

5	 A token is a measure of the text length of AI training data and outputs. A token is equivalent to about three quarters 

of a word.
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2 Beyond the DeepSeek hype: what has 
changed and why? 

DeepSeek first caught the attention of AI developers towards the end of 2024 with its Version 3 

‘classic’ LLM, which scored reasonably well on standard performance benchmarks for math-

ematics, computer coding and understanding of texts6, though still below the most advanced 

models. This was quite an achievement for a Chinese AI model developer with limited access 

to the most advanced Nvidia AI computing chips7. Among several innovations, DeepSeek 

massively scaled up the use of existing ‘mixture-of-experts’ model training technology (Jacobs 

et al, 1991). Mixture of experts was invented in 1991 when the earliest AI models ran into 

computing capacity constraints with then state-of-the-art hardware. It divides a large model 

into sub-models, each with their own expertise. This saves on memory capacity and comput-

ing costs.

The follow-up DeepSeek R1 model subsequently ranked in the top five on the Chatbot 

Arena LLM Leaderboard8, a subjective performance ranking of AI models by users. DeepSeek 

R1 is popular because it displays its reasoning steps explicitly when replying to a question. It 

also performs well on more objective benchmarks. To understand how DeepSeek R1 could 

achieve this, the rapidly evolving structure of LLMs over the last year must be examined. 

From the start of the current generation of LLMs in 2017 until mid-2024, leading LLMs 

invested heavily in the AI model pre-training phase that consumes huge volumes of train-

ing data (or tokens) and computing power to estimate billions of internal parameters. LLMs 

exhibited a scaling law (Kaplan et al, 2020): better model performance requires more training 

data and more computing capacity. That drove investment in hyperscale computing facilities, 

with specialised AI processor chips. Nvidia’s graphic processing units (GPUs) hold a near-mo-

nopoly in that market segment (Martens, 2024a).

By mid-2024, LLM developers realised they were close to exhausting the available stock of 

human-generated training data, or even future growth in that stock. That seems to put limits 

on expanding the scale of models and triggers decreasing returns from further expansion 

(Villalobos et al, 2024). A first solution to this was to let AI models produce their own ‘syn-

thetic’ training data. But synthetic pre-training data soon ran into diminishing returns too 

because it was highly correlated with the original data and offered very little additional train-

ing information (Shumailov et al, 2024).

A better solution was to produce structured Q&A datasets that document the chain-of-

thought (CoT) or ‘reasoning’ process that explains how to respond to a question to produce a 

correct answer. Models can then be fine-tuned in a second phase, after pre-training, by learn-

ing how to ‘reason’ their way to a correct answer. Previously, fine-tuning had been done on a 

smaller scale with human feedback. CoT datasets replaced human feedback and considerably 

shortened the learning cycle9. While CoT data can be curated by humans, it can be obtained 

much more cheaply and on a larger scale by an older technique called ‘distillation’ (Hinton 

et al, 2015), or extraction of knowledge from other LLM models. Distillation involves smaller 

‘student’ models learning from larger and better ‘teacher’ models. 

DeepSeek used its own LLM, DeepSeek V3, in combination with other LLMs including Ali-

6	 For an overview of widely used tests and a comparison of model performance on these tests, see for example 

https://epoch.ai/data/ai-benchmarking-dashboard.

7	 DeepSeek claims to have access to only 2,500 high-end Nvidia processor chips. However, Amodei (2025) estimated 

that it has access to mix of about 50,000 of more- and less-advanced Nvidia chips. This is still an order of magnitude 

less than the largest hyperscale AI infrastructure announced by Meta and XAI, but sounds more realistic for training 

an LLM like V3.

8	 See ‘Chatbot Arena LLM Leaderboard’, https://lmarena.ai/?leaderboard.

9	 Maarten Grootendorst, ‘A Visual Guide to Reasoning LLMs: Exploring Test-Time Compute Techniques and 

DeepSeek-R1’, 3 February 2025, https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms.
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baba’s Qwen, Meta’s Llama and probably OpenAI’s o1 reasoning model, to generate 800,000 

CoT examples that it used for reinforcement learning in the fine-tuning stage of DeepSeek 

R1. Reinforcement learning requires less computational resources than pre-training. That 

allowed DeepSeek (2025) to claim that its model cost only a fraction of major LLMs – a claim 

that sent stock markets, already very nervous about over-valued AI stocks, tumbling (see 

section 1).

Since then, copy-cat models have emerged that apply the same procedure to all kinds of 

CoT training datasets, even more cheaply than DeepSeek R1. In February 2025, Muennighoff 

et al (2025) reached a new record, fine-tuning an AI model on just 1000 CoT examples, taking 

just seven hours to train. Prime Intellect (Mattern and Hagemann, 2025), an AI start-up, gen-

eralised this training procedure to generate CoT training data from a wide range of existing AI 

models. In fact, DeepSeek R1 showed openly what OpenAI had already been doing secretly 

for a while with its series of reasoning models, starting with OpenAI o1 in September 202410. 

O1 was an expensive model when the combined cost of pre-training and fine-tuning is con-

sidered. DeepSeek’s R1 low-cost claim was based on the cost of fine-tuning only.

The arrival of DeepSeek marks the start of a new cycle in AI model development. Models 

build on top of each other, with recursive development between models to accelerate AI 

learning at ever lower cost. The approach to model training based on training-data collection, 

pre-training and fine-tuning by a single firm is being replaced by a more horizontal net-

worked model, potentially reshaping the AI field by proliferation and interaction – some call it 

free-riding – between AI models, combining distillation of knowledge and distributed training 

across models (Moussa et al, 2025). AI systems are being pulled out of a small number of big 

compute silos and sucked into a universe of smaller, more-powerful models with lower end-

user inference costs. They are derived from and built on top of larger models with an addi-

tional fine-tuning training phase.

So far, LLMs have been “stochastic parrots”11: they require statistically representative 

samples of examples to learn from. OpenAI o1, DeepSeek and subsequent smaller reasoning 

models are gradually escaping from this statistical constraint by using more information-rich 

CoT training data that substantially increase the gradient of the learning curve and reduces 

computation requirements accordingly. Humans pursue the same learning strategy, with 

great success – humans are able to learn from just one or a few examples because of an ability 

to detect similarities between examples through lateral thinking (De Bono, 1970). Children 

learn to count from concrete examples – counting apples for example. Once they understand 

the basic principles at a more abstract level, they can apply the same counting rules in many 

other settings. 

Chollet (2019) constructed the Abstraction and Reasoning Corpus (ARC), an AI bench-

mark that measures this type of thinking. Children score high on this benchmark but it is still 

difficult for AI models because they are still relatively weak in abstraction. OpenAI’s o3 model 

is among the first to score well on the ARC test (Chollet, 2024). True one-shot learning from a 

single example, or even zero-shot learning based purely on reasoning (Pourpanah et al, 2023) 

would finally overcome the statistical constraints of LLMs and turn them from parrots into 

true reasoners. 

10	 See OpenAI press release of 12 September 2024, ‘Introducing OpenAI o1-preview’, https://openai.com/index/

introducing-openai-o1-preview/.

11	 A label invented by linguist Emily Bender. See Elizabeth Weil, ‘You Are Not a Parrot’, New York Magazine, 1 March 

2023, https://nymag.com/intelligencer/article/ai-artificial-intelligence-chatbots-emily-m-bender.html.
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3 Reasoning models and the AI model 
scaling law

Amodei (2025) rejected the notion that DeepSeek showed that smaller reasoning models 

break the AI scaling law and that there is consequently no need to further increase computing 

capacity and training data to improve the performance of AI models. He argued that Deep-

Seek reduced training costs eightfold, mainly by successfully and more efficiently applying 

existing training techniques, such as mixture-of-experts (Jacobs et al, 1991), under pressure 

from US export controls that resulted in a scarcity of advanced Nvidia AI processor chips in 

China. However, DeepSeek’s performance is still below that of the most advanced models 

by a factor of two, according to Amodei (2025). Overall, the net efficiency gain is thus about 

fourfold. That puts DeepSeek on the trend line of gradual improvement in the performance of 

LLMs – but it is not a revolution. DeepSeek R1 development costs only cover the fine-tuning 

stage and exclude the cost of pre-training the underlying LLMs from which CoT reasoning 

was distilled. When DeepSeek R1 and V3 are considered together as a joint product, the scal-

ing laws are not broken.

CoT datasets contain more structured information than pre-training data. This is very 

similar to the way students learn from handbooks and exercises that explain how to approach 

problems and find correct solutions. The same CoT-reasoning approach can be implemented 

beyond fine-tuning in the next ‘inference’ stage when models reply to user questions. Allow-

ing a model more time to ‘think’ about how to respond to a user question enables it to explore 

a variety of alternative internal reasoning processes and select those that produce better 

replies.

Smaller models require fewer computations to respond to a given question. That makes 

them cheaper for end users. However, allowing them more time for internal reasoning to 

produce better replies increases demand for computing resources. The negative price effect 

attracts more users and more applications for AI models. That quantity effect dominates and 

results in a net cost increase for model end users, though not for model developers. Devel-

opers thus do not pay a large chunk of the costs, in the form of run-time costs for users. As a 

result, investment in AI computing infrastructure is expected to continue to grow because of 

growing user demand for AI-based services.

Until the end of 2024, LLM performance was governed by the pre-training scaling law: 

more data and computing power increased performance. That put AI model costs on an 

unsustainable exponential cost growth trajectory (Martens, 2024b). Limitations on the 

volume of available data resulted in declining marginal returns to scale. The arrival of DeepS-

eek and OpenAI’s reasoning models shifted training away from pre-training to fine-tuning or 

post-training. That gave LLMs a new lease of economic life. Post-training scaling laws provide 

a welcome technological and economic reprieve from the pre-training scaling law. If any-

thing, the steepness of the model learning curve has increased, as suggested by Grootendorst 

(2025) and Busbridge et al (2025). Shifting to fine-tuning with CoT data does not break the 

scaling law. Rather, it starts a new fine-tuning scaling-law cycle.
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4 Impacts on the economics of AI 
As a result of all these changes in model-training technology, the AI cost structure has shifted 

downstream, first from LLM pre-training to second-stage fine-tuning, and further down to 

‘reasoning’ at the inference or test-time stage when the model responds to user questions. Data 

costs have also decreased, from collecting huge primary pre-training datasets to collecting 

much smaller CoT datasets with reasoning examples, extracted from other LLMs.

This entails a shift from very high fixed costs for LLM developers for pre-training, to lower 

fixed costs for developers for fine-tuning, and finally to more recurrent reasoning costs for 

users at the inference stage. Smaller models, such as DeepSeek, have lower user costs per unit 

(token) of input (questions) and output (replies) at the inference stage because they are cheaper 

to operate than large models. However, the volume of inference computing increases when 

models think longer over a reply and when lower prices stimulate users to use more models and 

ask more questions.

The shift from pre-training to fine-tuning raises questions about the optimal combination of 

the two training methods. Busbridge et al (2025) provided an empirical estimate of this relation-

ship in the form of “distillation scaling laws” that depend on the relative size and performance 

of teacher and student models. For a given amount of training data, there is an optimal ratio 

between the size of student and teacher models. When the performance gap between the two 

becomes too large, an overly capable teacher model produces worse student models (Busbridge 

et al, 2025). In this way, a computational equilibrium emerges between teacher and student 

models, or between original learning in the pre-training phase and derived or distilled learn-

ing in the reinforcement stage. That indicates limits to free-riding or distillation, or a balance 

between acquired and own learning in LLMs – again very similar to human learning. Putting a 

university professor before a primary school class would create a very wide performance gap. 

Letting primary school pupils teach each other would narrow the performance gap too far. 

This increases the complexity of pricing of LLM use. Bergemann et al (2025) showed how AI 

model developers need to design pricing packages for users that take into account the volume 

and cost of input and output tokens during inference, as well as the duration of inference com-

putations. Pricing can be linear or based on volumes and the value of computations and users’ 

willingness to pay for that value.

Moreover, pricing needs to amortise the fixed costs of pre-training and reinforcement learn-

ing. If LLM developers operate in a monopolistic market in which model quality differences are 

important, they can mark-up prices above marginal inference costs to amortise the fixed costs 

of training. If they are in a competitive market with minor quality differences, mark-up pricing 

becomes difficult. Developers may also underprice inference to increase their market shares. 

The rapid evolution and turnover of LLM rankings on the Chatbot Arena Leaderboard indicates 

vigorous quality competition between LLMs. Models may become more differentiated as they 

upload specialised CoT training data in the second fine-tuning phase. However, any monopolis-

tic training-data advantage will be quickly eroded in an AI ecosystem in which models increas-

ingly interact with, and extract knowledge from, each other.

On one hand, marginal cost pricing at the user inference stage, combined with fixed 

costs for pre-training and fine-tuning or reinforcement learning, undermines the economic 

sustainability of AI business models. The only way out for LLM developers is to reduce price 

competition, produce higher value-added services that can be sold at premium prices or 

bundle their LLMs with other services for which they have a stronger market position. For 

example, Microsoft bundles LLMs with office productivity software. Meta bundles LLMs 

with targeted advertising services on its social media platforms. Apple bundles LLMs with its 

devices. Anthropic is developing specialised AI business services12.

12	 Cristina Criddle, ‘Anthropic set to focus on business users in search for new revenues’, Financial Times, 18 March 

2025, https://www.ft.com/content/97e0ab06-8d83-4918-9079-3ed935bc1c63.
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On the other hand, monopolistic business strategies draw the attention of antitrust and 

competition policymakers in the EU and elsewhere. EU policymakers have several instru-

ments at their disposal to keep monopolistic behaviour at bay. Should large AI companies be 

designated as ‘gatekeepers’ – or dominant, hard-to-avoid platforms – under the EU Digital 

Markets Act (DMA, Regulation (EU) 2022/1925) and bundle LLMs with core platform services 

under that act, the obligations of DMA Art 6§7 apply13. This forces gatekeepers to ensure free 

third-party access and interoperability with all software and hardware components sepa-

rately, as an unbundled or vertically separable service. That would undo any attempts by AI 

developers to make the market more monopolistic.

Would this be a good strategy for competition policymakers? The risk of this approach 

is that it would undermine the economic sustainability of AI business models, at least for 

big-tech AI firms that meet the DMA’s quantitative threshold criteria. Smaller firms that use 

AI would escape from this and be able to price their specialised AI services at a mark-up 

above marginal user inference costs. That would be a perfectly pro-competitive policy, unless 

smaller AI firms with ‘student’ AI models continue to depend on larger ‘teacher’ LLMs. Erod-

ing the economic viability of the latter would also affect the performance of the former. This is 

a policy area in the making that requires careful observation of market developments.

Another important question in this newly emerging AI ecosystem is how tolerant AI 

companies will be of mutual distillation and free-riding. Intellectual property rights do not 

apply to LLMs. The terms of use of most LLMs prohibit use for designing competing products. 

This may be hard to enforce, unless technical protection measures can be designed that make 

distillation difficult.

Schrepel and Potts (2024) underscored the commons nature of much AI technology. 

Software used for AI models is shared via open-source platforms such as GitHub and Hugging 

Face, though open-source user licenses come with a variety of conditions. AI modelling 

expertise is widely shared online through research papers and blogs. Model pre-training 

data is compiled from webpages and other text sources, though some of this data may violate 

copyright.

Beyond these more traditional commons resources for AI models, DeepSeek has laid bare 

a new commons dimension: a network of interacting AI models. That creates a decentral-

ised pool that combines overlapping knowledge sets from all these models. No single party 

controls this pool but everyone has access to it, unless legal or technical protection measures 

would prevent this. Allowing access to that pool opens up vast opportunities to accelerate 

innovation and more knowledge accumulation. It would further accelerate competition 

between AI companies and between countries in a tense geopolitical context.

This creates a policy dilemma. Open access and hyper-pooling of knowledge in all AI 

models would be highly beneficial from an overall societal-welfare perspective. It would 

accelerate innovation and stimulate competition and minimise user inference costs. How-

ever, open access and free-riding could undermine investment incentives in LLM pre-training 

and fine-tuning. Open-access networked models may also ultimately undermine the quality 

of model responses as original learning is discouraged in favour of copying (Rogers, 1988).

For economists, this is a well-known dilemma: striking a balance between monopolistic 

rent-seeking behaviour and dynamic innovation. The former is an unavoidable evil in order to 

produce the benefits of the latter. The same policy dilemma is already playing out in pre-train-

ing of LLMs that require access to huge volumes of copyright-protected training data, giving 

rise to tensions between rightsholders and AI developers (Martens, 2024c).

Policymakers will have to find a new balance between these opposites. Because AI 

reduces the cost of innovation, the degree of protection of monopolistic investment rents can 

be lowered, compared to the pre-AI world. But it cannot be eliminated entirely. Defensive 

technical-protection measures could be installed that track the type and frequency of user 

questions, or that profile users, to detect distillation methods. These could be combined with 

13	 AI models are not yet classified as a core platform service under the DMA. But this may change.
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user-price discrimination, with prices increased for longer data extractions (Bergemann et al, 

2025).

In addition to these defensive measures, model developers can change strategies and 

build more-exclusive vertically integrated and specialised services on top of their AI models – 

and then charge premium prices for these services. Whether these technical and commercial 

strategies are sufficient to create viable AI business models remains to be seen.

5	 How do changing AI technologies affect AI	
development in the EU?

Unlike the US, the EU does not have home-grown big-tech companies that operate hyperscale 

computing infrastructure and generate sufficient revenues from their global business models 

to cover the high costs of LLM development. OpenAI and Oracle’s $100 billion to $500 billion 

Stargate AI infrastructure investment announcement14 signalled that these second-tier play-

ers want to become big-tech AI players with access to hyperscale computing infrastructure. It 

also signals that OpenAI is trying to wean itself off its $13 billion ‘coopetition’ agreement with 

Microsoft, exchanging access to Microsoft computing infrastructure in return for use of Ope-

nAI’s ChatGPT model in Microsoft services (Martens, 2024a). Whether OpenAI will succeed 

depends on its ability to rapidly scale up its $5 billion (2024) annual revenues, to catch up 

with Microsoft’s revenues of $245 billion. 

In contrast with Stargate’s private financing, a European Union initiative announced in 

January 2024, AI Factories15, was all about injecting several billions of taxpayers’ money into 

existing government-owned scientific supercomputers. Fortunately, in time for the Paris AI 

Summit in February 202516, the EU realised that it needed to be more ambitious and to pull in 

private investors. French President Emmanuel Macron announced €109 billion in mostly pri-

vate investment in state-of-the-art computing infrastructure, some of it financed by the same 

sovereign wealth funds as the Stargate initiative17. In parallel, European Commission Presi-

dent Ursula von der Leyen announced a €200 billion investment in AI infrastructure18, also a 

mixture of private and public money. How all these quickly-compiled big-figure investment 

announcements will roll out in practice remains to be seen of course. The announcements 

lack details on commitments. 

DeepSeek has given smaller AI companies the prospect of competing with big-tech AI 

models at a much lower AI-model cost, avoiding heavy investment in hyperscale infrastruc-

ture. However, as argued above, that is only part of the story. DeepSeek depends on knowl-

edge and training data extraction from larger models. It is important here to distinguish 

between the scale of an AI model and the scale of computing infrastructure. 

Large-scale LLMs will still be needed, if only as teacher models for smaller student AI 

models. But fine-tuning and reasoning at the inference stage can be accomplished by smaller 

models. That creates an opportunity for smaller AI firms to enter the market.

The scale of AI computing infrastructure will still have to expand as cheaper and smaller 

AI models spread and the positive quantity effect outpaces the negative price effect. More 

computing power will be needed for inferencing. Since user inferencing infrastructure is best 

14	 See footnote 3.

15	 See European Commission, ‘AI Factories’, undated, https://digital-strategy.ec.europa.eu/en/policies/ai-factories.

16	 See https://www.elysee.fr/en/sommet-pour-l-action-sur-l-ia.

17	 Jacob Wulff Wold, ‘France unveils €109 billion AI investment plan’, Euractiv, 10 February 2025, https://www.

euractiv.com/section/tech/news/france-unveils-e109-billion-ai-investment-plan/.

18	 See footnote 4. 
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https://www.euractiv.com/section/tech/news/france-unveils-e109-billion-ai-investment-plan/
https://www.euractiv.com/section/tech/news/france-unveils-e109-billion-ai-investment-plan/
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located geographically close to users, there are certainly good opportunities to invest in that 

type of infrastructure in the EU. To what extent that will happen in large concentrated com-

puting centres or in a more distributed way across smaller facilities, possibly with edge com-

puting in consumer and firm devices, remains to be seen. The Commission’s announcement 

in February 2025 appears to be a mixture of larger and smaller AI infrastructure projects.

Whether the EU can successfully build its own foundational LLMs is highly uncertain. 

Economically successful LLMs require not only AI infrastructure and skilled staff. They also 

require business models that can earn a rate of return on the huge fixed investment costs. 

Big-tech firms can bundle LLMs with their existing global services business models and earn 

additional revenue. For smaller EU firms, that is much more difficult when they operate in a 

market with strong price competition and have to sell their AI services at marginal cost. They 

may be better off below the technology frontier, building specialised niche market AI applica-

tions on top of existing LLMs (Martens, 2024a).

Developing a layer of smaller and more specialised fine-tuned AI models and applications 

on top of existing LLMs would be sufficient to spur innovation and productivity growth in the 

EU. Whether smaller AI firms can charge a profitable marked-up price to users to pay their 

due share in LLM development costs will depend on competition in their niche markets. As 

discussed above, the shift in the AI model cost structure makes it even more difficult to amor-

tise the fixed costs of LLM pre-training in a highly competitive end-user market in which user 

inferencing services are sold at marginal cost.

6 Policy conclusions
The release of the DeepSeek R1 model brought into the open a shift in AI model technology 

that had already started in mid-2024, when larger AI models ran into an economically 

unsustainable trajectory with exploding costs and decreasing returns to scale. AI model costs 

shifted away from pre-training to fine-tuning, with the help of reinforcement learning on 

more logically structured CoT data, and to longer ‘reasoning’ time at the inference stage when 

models respond to user questions. This also marks a shift from high fixed costs for model 

developers to more recurrent costs for users during inference.

At the same time, competition between models remains very vigorous. User inference is 

often priced at marginal computation cost, leaving little or no profit margins for model devel-

opers, unless they can bundle their models with specialised services. Moreover, increased 

knowledge extraction or ‘distillation’ between large LLM ‘teacher’ models and smaller 

‘student’ models results in a degree of free-riding that may erode the business models of LLM 

developers.

Policymakers face a dilemma. Should they protect static monopolistic rents for model 

developers as an incentive to invest in LLM development and avoid free-riding by smaller 

models? Or should they favour smaller derived AI models and model applications that 

free-ride and build on top of existing LLMs, as a way of promoting more innovation? This is a 

difficult balancing exercise in a rapidly evolving technological setting. Policymakers should 

be careful to avoid putting their faith in pre-AI policy recipes, and should be open to taking a 

pro-innovation stance.

While DeepSeek cast doubts over the wisdom of investment in AI computing infrastruc-

ture, we have argued in favour of continuing to do so because demand for AI services is 

very likely to continue to expand and require ever more computing capacity. The EU has 

announced several AI investment initiatives, with a mixture of private and taxpayer money 

and a range of smaller and larger infrastructure clusters. A focus on smaller infrastructure 

and AI models and applications would certainly contribute to lifting productivity growth in 

the EU. Large-scale infrastructure for foundational LLMs is far riskier. Along with experienced 

Policymakers should 
be careful to avoid 
putting their faith in 
pre-AI policy recipes, 
and should be open 
to taking a pro-
innovation stance
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staff and adequate computational resources, it requires large-scale business models to earn 

a return on these huge fixed investment costs. Building applications on top of existing LLMs 

may be less risky, especially because of the shift in AI cost structures and increasing competi-

tion squeezes prices and profit margins.
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