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EXPLODING AI INVESTMENT 
COSTS AND SLOW 
PRODUCTIVITY GROWTH
BERTIN MARTENS

This working paper explores the tension between rapidly increasing artificial intelligence 
investment costs and the slower pace of productivity growth, raising concerns about 
a potential ‘economic winter’ for AI. AI has shown significant technological progress, 
particularly with machine learning and generative AI models such as ChatGPT. 
Investment in AI has surged. But there are concerns about whether these investments will 
yield proportional returns. 

Training costs for a single frontier AI model are increasing exponentially, from $1,000 in 
2017 to nearly $200 million in 2024, driven by constant returns to scale in AI model training 
data, compute capacity and model complexity. Costs could reach billions of dollars by 
2030, despite a rapid fall in unit costs per computing operation over the same period. 
Global AI infrastructure costs in hardware could exceed $1 trillion by the mid-2030s. 
Amortizing these huge fixed costs requires business models that can be rolled out across a 
very large user market.  

Estimates about AI’s contribution to productivity growth vary, from a modest 0.5 percent 
per year to a very optimistic 10 percent per year. Research shows that productivity 
usually catches up slowly compared to costs. Without significant productivity gains, the 
current investment cost trajectory is unsustainable. We estimate that 3 percent annual 
productivity growth across advanced economies would be required to sustain AI model 
cost extrapolations to 2030. In an optimistic scenario, productivity increases would result 
in accelerated economic growth.
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1 Introduction 

Optimism about artificial intelligence as a breakthrough technology with substantial economic impact 
has been growing since 2010. At that time, machine learning in neural networks started to show 
promise, in particular with the “transformer” deep-learning technology (Vaswani et al, 2017) that led to 
the current generation of large language models or generative AI (GenAI) models, including ChatGPT1. 
Since then, AI has been riding a wave of astonishing technological progress and massive investment. It 

has propelled stock market valuations of big-tech companies to dizzying heights. 

But analysts worry that AI investment spending will exceed returns2, both for AI model developers and 
users. Companies can only afford the AI expenditure if it increases their revenues, but nevertheless, 
they are continuing to double down on AI capital expenditure, arguing that they cannot afford to miss 
the opportunities that AI will bring. Stock markets seem to reward them for doing so. How long can this 
tension between spending and revenue continue? If the current pace of exponential growth in the size 
of GenAI models continues, AI investment costs would reach macro-economic significance within the 
next five years and become totally unaffordable within a decade. How much GenAI-driven productivity 

growth would be needed to keep pace with that cost trajectory?   

This working paper looks at the drivers of the currently fast-growing AI costs and the economic 
conditions under which continued cost growth may or may not be sustainable. It takes inspiration from 
the analysis of dual-speed economies by Nordhaus (2021) to explore some medium-term economic 
scenarios for AI. Will a rapidly growing share of AI expenditure in GDP accelerate growth, or will AI 
absorb too much capital without a concomitant rise in productivity, and lead to an economic ‘AI 
winter’? AI has been through ‘winter’ periods before, when investment dried up because of lack of 
technological progress3. This time, investment may dry up because returns do not justify the costs. Are 

there alternative AI trajectories that would avoid this scenario?  

Section 2 provides some empirical evidence on exponentially growing GenAI investment costs, cost 
components and the scaling law that drives exponential growth. Section 3 takes an economic 
perspective and compares that cost explosion with the benefits side, in the form of GenAI-induced 
productivity growth. Section 4 brings the cost and benefits side together and shows that they are on an 
unsustainable trajectory. Section 5 goes beyond economics and explores some non-economic drivers 
of AI investment. Section 6 concludes. 

1 Large language models and generative AI models respond to prompts to produce, respectively, new text and new images 
or other audiovisual material, based on ‘learning’ from very large datasets. 
2 Skye Jacobs, ‘Big Tech needs to generate $600 billion in annual revenue to justify AI hardware expenditure’, TechSpot, 7 
July 2024, https://www.techspot.com/news/103699-big-tech-needs-generate-600-billion-annual-revenue.html; Hannah 
Murphy, ‘Meta’s revenue growth reassures investors as Zuckerberg plots AI spree’, Financial Times, 31 July 2024, 
https://www.ft.com/content/edbe2580-0b64-4339-9be2-4b4fee46211b; Camilla Hodgson, ‘Microsoft’s slower cloud 
growth fails to impress Wall Street’, Financial Times, 1 August 2024, https://www.ft.com/content/cc781bd9-315a-4e9c-
9730-393ca14fbcbb.  
3 See for example https://en.wikipedia.org/wiki/AI_winter. 

https://www.techspot.com/news/103699-big-tech-needs-generate-600-billion-annual-revenue.html
https://www.ft.com/content/edbe2580-0b64-4339-9be2-4b4fee46211b
https://www.ft.com/content/cc781bd9-315a-4e9c-9730-393ca14fbcbb
https://www.ft.com/content/cc781bd9-315a-4e9c-9730-393ca14fbcbb
https://en.wikipedia.org/wiki/AI_winter
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2 Exponentially growing AI costs 

GenAI models are statistical prediction models that need to be trained with large amounts of data 
(Agrawal et al, 2018). Older AI models required relatively small amounts of annotated data for training. 
Annotation identifies what the data is referring to. It is slow and costly because it is done by humans. 
They could only respond to questions related directly to the data on which they were trained. New 
generative AI models are much more flexible and require less annotation, but need much larger 

amounts of training data. 

They also need more computing capacity to crunch the data. Figure 1 illustrates the exponential 
growth in computing requirements, starting with Google’s transformer model (Vishwani et al, 2017), 
which laid the foundation for generative AI technology. Computing requirements, expressed in 
petaflops4, increase by an order of magnitude (x10) for each new generation of models, from less than 
10,000 petaflops for the first transformer model in 2016 to more than 100 billion petaflops for recent 
models (2023).  Computing costs have been rising proportionally to computing requirements (Figure 
1, y axis), from around $1000 for the first transformer model in 2017, to Google’s Gemini Ultra model in 

2023 that cost $120 million to train. As of late 2024, training costs for top-ranking GenAI models are 
nearer to $200 million. 

Figure 1: Training costs and computing needs for selected AI models 

Source: Bruegel based on Epoch (2023) and AI Index Report 2024, p 65-66. 

Cottier et al (2024) estimated that GenAI model training costs increased exponentially by a factor of 
2.4 to 2.6 per year, or around 240 percent per year, from 2016 to 2023. Starting from the cost of the 

4 FLOP stands for ‘FLOating-Point operation’. A floating-point operation is a single arithmetic operation involving floating-
point numbers, such as addition, subtraction, multiplication or division. Flops are a measure of the computational power of 
a computer. 1 petaflop = 1015 flops per second. 
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largest frontier models at the end of 2023 – OpenAI’s GPT4 and Google’s Gemini Ultra – and 
extrapolating to 2030 would lead to an estimated training cost for a single GenAI model of $60 billion. 
Currently, there are dozens of frontier GenAI models, and new ones are coming out every month. 
Further extrapolation to 2035 would produce an almost unimaginable figure of nearly $6 trillion, nearly 
half of EU GDP. That does not look very plausible.   

On top of training costs, AI requires investment in hardware and infrastructure in the form of data 
centres. Cottier et al (2024) estimated the cost of computing infrastructure at ten times the cost of 
model training. That infrastructure can be used to train several models. The same authors estimated 
the hardware amortisation rate at 140 percent/year, or 100 percent depreciation in 8.5 months5. By 
that time, a new generation of AI computing chips will have arrived with superior performance. 
Infrastructure costs for GPT4 by end 2023 may have been as high as $800 million (Cottier et al, 2024). 
Extrapolation could push that figure up to $500 billion by 2030 and many trillions of dollars by the 
mid-2030s6. And that infrastructure cost could be replicated across at least half a dozen hyper-scaling 
big tech firms. When infrastructure is written off for model training, it can still be used for other 
purposes, including for ‘inference’ or daily running of GenAI models for business use to reply to user 
queries. Running costs come on top of training costs. 

Cottier et al (2024) broke down model training costs into five components: staff, AI chips, other server 

costs, network interconnection costs and energy consumption. In accounting for hardware costs, they 

assumed that the AI modeller owns the hardware that is amortised over the duration of the model 

training period. Alternatively, modellers can pay market rental rates for cloud infrastructure during the 

training period. Cost estimates cover the entire development cycle of an AI model, from pre-training 

experiments needed to design new model features and components, to model calibration and the final 

model training run. 

Figure 2 presents an estimated break-down of these five components for some recent AI models. Staff 
is often the largest cost component. Skilled AI staff are scarce. AI companies compete for each other’s 
employees. Staff are usually paid a salary plus equity benefits, which are hard to estimate, especially 
for AI start-ups with volatile stock values. Staff costs include data collection and cleaning costs, often 
carried out by large teams of lower-skilled staff. 

Specialised AI accelerator chips are the second most expensive component. The market for AI chips is 

very monopolistic, with a single market leader (Nvidia). Markets for hyper-scaled cloud infrastructure 

are also tightly controlled by half a dozen players. Other server and cluster interconnection costs 

account for the remaining model training costs. Most of these inputs are sold in markets that 

5 This depreciation rate is based on the estimated growth rate in processor price-performance (Hobbhahn et al, 2023). This 
depreciation rate is for AI processor chips only. Other hardware parts of the cloud computing infrastructure may have longer 
economic lifetimes.  
6 With that perspective in mind, Sam Altman’s search for investors to finance a trillion dollar AI computing centre suddenly 
sounds more plausible, though not necessarily more realistic. See Keach Hagey, ‘Sam Altman Seeks Trillions of Dollars to 
Reshape Business of Chips and AI’, Wall Street Journal, 8 February 2024, https://www.wsj.com/tech/ai/sam-altman-seeks-
trillions-of-dollars-to-reshape-business-of-chips-and-ai-89ab3db0. 

https://www.wsj.com/tech/ai/sam-altman-seeks-trillions-of-dollars-to-reshape-business-of-chips-and-ai-89ab3db0
https://www.wsj.com/tech/ai/sam-altman-seeks-trillions-of-dollars-to-reshape-business-of-chips-and-ai-89ab3db0
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experience supply bottlenecks that drive up prices (Martens, 2024). Electricity is only 4 percent to 6 
percent of the total. Power supply for server farms may come from local suppliers. Data centres might 
also set up their own power plants. Note that electricity costs are estimated for AI developers in the 
United States. In the EU, electricity prices are several times higher than in the US. 

Training costs may vary considerably between models. Google’s Gemini Ultra uses Google’s own Tensor 

Processing Units (TPU). That avoids paying mark-ups to external chip suppliers. Moreover, TPUs are an 
order of magnitude more efficient in computing terms because they operate at lower eight-bit 
precision levels compared to the 32-bit standard (Hobbhahn et al, 2023). Other AI computational 
performance factors affect cost outcomes, including chip-to-chip communication bandwidth that 
increases with new technologies.  

Figure 2: Breakdown of costs for AI model training and experimentation 

 

Source: Bruegel based on Cottier et al (2024), p 9. 

The main driver of the AI model training cost explosion is the so-called ‘scaling law’ for GenAI models. 
Kaplan et al (2020) found that improvements in the cognitive performance of GenAI models are 
subject to constant returns to scale in complementary inputs, including the number of model 
parameters, the volume of training data and the available computing capacity. For optimal model 
performance, all three factors must be scaled up simultaneously. Diminishing returns occur when one 
of these three factors is not scaled accordingly. The volume of training data only needs to be increased 

by 0.74 times the increase in the number of parameters, indicating that larger models are more data 
efficient than smaller models. Kaplan et al (2020) expected constant returns to scale to continue to 
hold for the foreseeable future. The red line in Figure 1 illustrates that point. 

The cost explosion is happening despite a rapid decline in computing costs. Hobbhahn et al (2023) 
estimated that the cost of computations halved every 2.1 to 2.5 years from 2016 to 2022. 
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Aschenbrenner (2024, p 23) claimed even faster falling computing costs. But GenAI models increased 
demand for computing capacity by about twelve orders of magnitude between 2010 and 2024 
(Aschenbrenner, 2024, p 21). Figure 1 suggests an expansion of eight orders of magnitude between 
2016 and 2023, from 1000 to 100 billion petaflops per GenAI model. Clearly, the quantity effect 
dominates the price effect. 

Vast increases in the scale and complexity of AI models have contributed to substantial improvements 
in cognitive performance in the last couple of years, as measured by the best human performance 
benchmarks on many tasks. The most advanced models are now performing close to or even above 
human benchmarks on tasks including image recognition, language understanding and mathematics 
(Maslej et al, 2024). New performance benchmark tests that exceed human performance will be 
needed. Still, there are basic tasks for which human intelligence is still far superior to AI. For example, 
3D vision and visual sorting of objects, tasks that can easily be accomplished by children, are still 
problematic for AI, though improvement is within reach with further scaling. A general AI model that 

outperforms humans in every aspect, is still far away, if it is even possible.  

It may be possible to achieve increasing returns to scale and to increase the efficiency of input use 
(data, computing capacity) in GenAI models. Kaplan et al (2020) calibrated their scaling law on the 
current generation of transformer AI models that started in 2017. New ways of using these models 
may affect the scaling law, in particular for data.  

Algorithmic efficiency gains can reduce the computational capacity required to train a model. Erdil and 
Besiroglu (2022) estimated that the amounts of computations required for training the same AI model 
decreased by about 500 percent per year between 2012 and 2021 because of increases in the 

efficiency of AI training algorithms. These gains enable AI models to train on smaller datasets, with 
lower computing capacity, to achieve the same outcomes. For example, OpenAI’s GPT-4o is much 
smaller than ChatGPT-4, can be implemented on less powerful computers and still achieves 
comparable outcomes. Quantum computing is a promising technology to reduce the cost of 
computation by many orders of magnitude. However, that depends on if and when quantum computing 
capacity can be scaled up sufficiently to accommodate large AI models. That is not yet within reach. 

Another potential source of increasing returns is what Aschenbrenner (2024) called the “unhobbling” 
of AI models – finding new ways in which AI models deal with problems. Each model has its own 

approach to problem solving and sticks to that approach. But there may be other and more efficient 
ways to solve problems. Human feedback through prompting and ‘chain-of-thought’ reasoning7 may 
give models human guidance on how to approach problems. Combining several AI models in a 
collaborative division-of-labour may also make models more efficient. AI engineers are experimenting 
with expanding the context or explaining the problem setting. The first GenAI could only handle 2000 
words of context; the latest models can handle more than 1 million words. 

 
7 See IBM, ‘What is chain of thoughts (CoT)?’ undated, https://www.ibm.com/topics/chain-of-thoughts. 

https://www.ibm.com/topics/chain-of-thoughts
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The current wave of GenAI models is trained on human-generated data. They learn to imitate human 
behaviour. However, GenAI models are now being used in configurations that depart from this human 
imitation scenario and facilitate learning and knowledge generation without human behavioural data, 
or with a small patch of human data as examples to initiate a learning process. For example, Google 
DeepMind developed the AlphaFold AI model (Jumper et al, 2021) to predict possible protein 

structures. The model learned the basics of protein structures from about 100,000 human-discovered 
protein structures and then set out to discover billions of additional protein structures. 

Two or more AI models can also be put in an adversarial configuration in which they compete to 
discover better responses to challenges. This is how DeepMind’s AlphaGo model discovered new 
strategies to play the Go game, superior to known human strategies, starting only from a set of basic 
rules for the game. Adversarial configurations are widely applied in strategic settings, such as military 
and security applications of AI models, to discover more efficient strategies that have never been 
played by humans, or would have been impossible for humans because they require very fast data 

processing and response times that humans are unable to muster (Scharre, 2023). 

A move away from the imitation of human behavioural data will become increasingly necessary 
because the rapidly expanding data requirements of GenAI models are hitting the so-called data wall, 
the maximum amount of human-generated data available (Maslej et al, 2024). Frontier AI models 
currently need many trillions of tokens or training data points. There is not enough text data on the 
internet and in other text archives to meet the requirements of the largest models. Stringent 
application of copyright law and opt-outs may further reduce the volume and increase the cost of 
available training data (Martens, 2024b). 

AI model developers are trying out various methods to overcome this constraint, for instance 
converting speech into text or using synthetically generated data. Some claim that synthetic data 
reduces model quality and may result in the complete collapse of AI models (Shumailov et al, 2024). 
Others are more optimistic (Ben Allal et al, 2024). Generating new data and knowledge in AI training 
settings that reach beyond what humans can produce is thus a necessary condition for continued 
growth in AI. That will inevitably steer the evolution of AI models away from transformer-type GenAI 
models, and thus from the scaling law that these models are subject to. 

Aschenbrener (2024) argued that an important step in generating non-human data and knowledge will 

be reached when AI can write its own code and solve its own research questions. Lu et al (2024) 
claimed to have achieved this task, at least for AI research (this claim at time of writing has not had 
wider confirmation or rejection). Nordhaus (2021) reformulated this is a more general way: AI should 
be able to take over and automate task automation, rather than leaving it to humans to invent task-
automation solutions.  
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3 The benefits of AI: productivity growth 

The main economic benefit expected from AI is productivity gains. Humans will be able to complete 
tasks faster and more efficiently. But what is known about these productivity gains? 

Brynjolfsson et al (2020) made a general observation on technology-induced productivity gains. They 
argued that embedding digital technology in firms requires costly investment in all kinds of 
complementary tasks and activities. That slows down the productivity uptake of new technologies and 

initially drags down productivity before it rises fast afterwards when the benefits mature. They found 
evidence of this productivity J-curve effect in computer software and suggested that this may also be 
the case for AI. Brynjolfsson et al (2020) recognised the productivity potential of AI but underscored 
that the AI roll-out across the economy can be expected to be much slower than the development of AI 
models. 

The J-curve roll-out effect is spread out over time, across the entire economy and across a wide range 
of GenAI models, not only the most powerful models at the technology frontier. Much of the roll-out 
across the economy will come from AI models below the technology frontier, including smaller models 

that can be trained with far less computing power than large foundational models, compressed models 
that are derived from large frontier models but redesigned to run at far lower computing costs8 
(Grootendorst, 2024) and specialised models designed for specific tasks. Developers of large 
foundation models are building ecosystems of satellite models around core large models. For example, 
OpenAI set up a ChatGPT applications store that contains millions of specific applications of ChatGPT. 
OpenAI also made available a much more compact version of its leading GPT4 model, ChatGPT4o-mini, 
designed to run on laptops and smartphones for all kinds of daily uses, such as children doing their 
homework or parents planning holidays. This branching out of large AI models into many derived 

models and applications that build on top of the foundation GenAI model will help to amortise the huge 
fixed costs of foundation AI models across a wide range of applications. 

The cognitive returns to AI constitute the primary driver to boost productivity growth: completion of 
tasks by humans will be done more cheaply by machines. However, Acemoglu (2024) saw only limited 
prospects for human-machine substitution and productivity growth. He estimated that an AI-driven 
productivity increase will not exceed 0.5 percent in the next decade. By contrast, Goldman-Sachs 
economists put that estimate at nearly 10 percent (Nathan et al, 2024). The difference between the 
two arises from Acemoglu’s very conservative estimates of the share of human tasks that will be 

affected by AI, cost savings and expansion of new tasks, and more capital deepening in the economy. 
The substitution approach has very little to say about the emergence of cognitive tasks that humans 
cannot carry out because of cognitive limitations on human brainpower, or on the automated 
automation of tasks. 

 
8 See Maarten Grootendorst, ‘A Visual Guide to Quantization’, 22 July 2024, 
https://www.maartengrootendorst.com/blog/quantization/. 

https://www.maartengrootendorst.com/blog/quantization/
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The empirical evidence on AI productivity effects is not yet very insightful. Several studies found 
positive productivity impacts of earlier AI technologies that pre-dated the arrival of GenAI (Alderucci et 
al, 2024; Da Silva et al, 2024; Czarnitski et al, 2022). There have been so far very few studies on the 
productivity effects of the current wave of GenAI models. Noy and Zhang (2023) found that ChatGPT 
raises productivity and quality in writing tasks by 0.8 and 0.4 standard deviations respectively. 

Brynjolfsson et al (2023) found a 10 percent productivity increase when call-centre operators are 
assisted by GenAI models. There are too few studies to generalise the findings. However, the number of 
firms that subscribe to ChatGPT and other GenAI models for professional use by their employees is 
growing very rapidly. An average professional business subscription currently amounts to less than 
€60/month/employee. That low price ensures wide penetration in business markets.  Widespread use 
is a good indication that businesses expect significant returns from their investments in AI 
subscriptions.  

4 Bringing the cost and benefit sides together  

At the current rate of exponential cost growth, AI infrastructure investment and modelling costs will 

reach macro-economic significance over the next decade. The International Monetary Fund World 
Economic Outlook 2024 (IMF, 2024) estimates that World GDP will reach $139 trillion by 2029, with 27 
percent of GDP or $37 trillion going to investment. The WEO forecast does not extend to 2030 or 2035. 
But a simple extrapolation of the 2025-2029 3.1 percent real growth rate to 2035 would bring world 
GDP to around $143 trillion in 2030 and $156 trillion in 2035, of which about $36 trillion and $40 
trillion respectively would go to investment. Assuming that there would still be competition between at 
least five very large firms with their own state-of-the-art AI hardware infrastructure, AI investment 
could reach $2.5 trillion in 2030 and $250 trillion in 2035. That would amount to a whopping 7 percent 

of world GDP in 2030 and an impossible 160 percent of GDP in 2035. Clearly, these growth rates are 
not sustainable and something will have to give.  

How can the rapidly escalating costs of AI be matched with the much slower emergence of AI 
productivity benefits? 

Nordhaus (2021) suggested following Baumol’s (1967) demand-side perspective on a two-speed 
economy, in which a rapidly advancing technology is subject to declining prices that are not matched 
by growth in demand. As a result, the share of that technology in GDP declines and the increasing 
relative cost of traditional technologies slows down GDP growth. Baumol called this “cost disease”. The 

opposite can also happen: rapidly declining prices for new technologies can trigger fast growth in 
demand, increase their share of GDP and accelerate GDP growth. However, Nordhaus (2021) showed 
that even for information technology sectors that experienced rapid price declines over the last two 
decades, including phones, computers and telecommunication services, there is no conclusive 
evidence either for rising or declining shares of these sectors in GDP. 

The issue can also be examined from a supply-side perspective, comparing a quasi-constant or slow-
growing volume of human and other types of capital with a rapidly growing volume of information 
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capital. The volume of information capital – in computers, software, data or AI – in GDP will rise if the 
volume of information capital expenditures rises faster than the relative price of information capital 
declines, compared to other capital. Nordhaus (2021) called this “growth euphoria” on the supply side 
– the reverse of Baumol’s (1967) “cost disease”: the quantity effect dominates the price effect and 
boosts GDP growth, to the point where a growth acceleration might emerge, not only through 

Keynesian multiplier and accelerator effects, but also because the increasing share of investment in 
GDP further accelerates GDP growth. The point might be reached where investment dominates 
economic growth and triggers a significant growth acceleration – an economic “singularity” in 
Nordhaus’s words. Using US data from the past decades, he found that a rising share of capital in GDP 
and a rising share of information capital in total capital pass the singularity test, but only just. Their 
growth trajectories are so slow that any singularity or growth acceleration event is at least a century 
away. 

Nordhaus (2021) used relatively old data for his empirical test, dating back to before the arrival of 

GenAI. With exponential growth in the cost of AI models, the cost of information capital in total capital 
and in GDP is rising much faster than implied by Nordhaus’s historical data for digital technologies. 
Would that bring the singularity horizon nearer? 

A simple back-of-the-envelope productivity growth calculation can clarify this. Assume that digital 
firms represent 10 percent of GDP and jointly invest $1 trillion in AI models, a figure that could easily 
be reached in the next few years. Assume also that this triggers a significant 3 percent productivity 
increase in 90 percent of the economy, generating a 2.7 percent increase in total GDP. Note that 3 
percent would already be quite an improvement compared to the 1.5 percent or so current rate. The 

GDP or market scale required to reach break-even for these AI investment costs would be $37 trillion if 
all productivity gains accrue to the digital firms that invest in AI9. More realistically, if only 50 percent 
of the gains accrue to digital firms, and the rest to AI users, the required GDP would be $72 trillion. 
According to the IMF (2024), GDP for the advanced economies amounts to $75 trillion. A 1 trillion AI 
investment is thus a credible choke-point, unless the AI investment were to continue to expand and/or 
trigger even higher productivity growth, above 3 percent, to achieve a growth ‘singularity’. 

5 Non-economic drivers of AI investment 

The reasoning above is confined to purely economic considerations. But other factors drive AI 
investment, beyond economic rationality. Human emotions and fears are an important push factor in 

AI investment.  

People are motivated by the ‘altruism factor’: a large part of the AI scientific community is driving ‘AI for 
good’, the application of AI technology to good causes that will improve human wellbeing in terms of, 

 
9 Productivity gains of 2.7 percent on a GDP of $37 trillion amount to $1 trillion in economic value gains. That covers the AI 
investment cost. 
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for example, health, environment, transport and combating climate change10. For example, OpenAI, 
one of the market leaders in AI, was originally established as a non-profit organization with the ‘AI for 
good’ purpose in mind. OpenAI is now a private for-profit company because AI has become big 
business that requires very large investments. An important part of that altruism movement is focused 
on ensuring alignment of AI model responses with human values. Developing general AI, on par or 

exceeding the capacities of human intelligence, is considered by some as an important contribution to 
the well-being of mankind11, but by others as a major threat to mankind (McLean et al, 2023). 

Firms are motivated by the ‘chicken game factor’. None of the big tech companies involved in AI 
development is willing to reduce AI investment, fearing they will miss out on a big opportunity. 
Investors subscribe to that view and downgrade the stocks of companies that show any sign of 
slowing down on AI investment, even when profits are under pressure12. Of course, investors know that 
new technologies are subject to hype-cycles of exuberance and crashes. But they will want to ride the 
cycle until the very last moment before the crash. 

Countries meanwhile are motivated by the ‘China factor’: AI is perceived as the most important frontier 
in military and security technology (Scharre, 2023). Mastery of the most advanced AI technologies will 
determine the outcome of future conflicts. The US and China are locked in an AI arms race they cannot 
abandon, whatever the costs (Scharre, 2023). As was often the case in the past, arms races are a 
major driver of technological development. General AI (Goertzel, 2014), the holy grail of AI, is seen as 
the ultimate military technology (McLean et al, 2023). AI as a non-rival digital technology can 
overcome any hardware and manpower constraints in conflict situations, provided unlimited 
computing capacity and data are available. This argument could be more generally reformulated as a 

national security factor that becomes increasingly important in a rapidly fragmenting and polarising 
geopolitical world. It also holds for the EU and its attempts to boost EU AI investment. Should the EU 
remain dependent on US big tech firms in terms of computing capacity and AI technology? 

6 How will this end? 

Nordhaus (2021) reaffirmed that AI is the first human-invented technology that replaces not only 
human labour but also human reasoning and knowledge accumulation – a production factor on which 
mankind has had a natural monopoly until very recently. Since there is no limit to knowledge growth, 
Dyson’s (1960) observation should perhaps be heeded: highly intelligent societies are necessarily 
computing-intensive. AI machines are needed to overcome human cognitive capacity constraints. 

Since computing requires energy, Dyson predicted that super-intelligent societies will want to capture 
all the energy available to feed their computers. They would literally burn the planet to harvest that 

 
10 See for example the ‘AI for Good’ summit meetings, organised by the United Nations, and the very broad policy agenda 
that it promotes: https://aiforgood.itu.int/. 
11 OpenAI’s mission statement refers to this. See OpenAI, ‘Planning for AGI and beyond’, 24 February 2023, 
https://openai.com/index/planning-for-agi-and-beyond/. 
12 Intel is a recent example. See Anton Goncalves, ‘Intel’s weak position in AI chip market leads to mass layoff’, TechTarget, 2 
August 2024, https://www.techtarget.com/searchdatacenter/news/366599761/Intels-weak-position-in-AI-chip-market-
leads-to-mass-layoff. 

https://aiforgood.itu.int/
https://openai.com/index/planning-for-agi-and-beyond/
https://www.techtarget.com/searchdatacenter/news/366599761/Intels-weak-position-in-AI-chip-market-leads-to-mass-layoff
https://www.techtarget.com/searchdatacenter/news/366599761/Intels-weak-position-in-AI-chip-market-leads-to-mass-layoff
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energy. Mankind has fortunately not reached that point yet. But the rapid development of AI models is 
moving in that direction. Investment in AI computing power will continue and mankind will find the 
means to pursue that goal, possibly beyond economic rationality. 

It is obvious that single- or even double-digit productivity growth scenarios are unable to keep pace 
with exponentially growing AI investment costs. At best, the point of reckoning might be postponed. 

The quantity effect – increased demand for computing power for AI – will continue to overwhelm the 
price effect of rapidly falling computing costs. That brings the economy closer to Nordhaus’s (2021) 
“growth euphoria” scenario in which the share of AI investments in GDP will increase – until economic, 
political and social pressures slow it down. A pessimistic new ‘AI winter’ scenario in which AI 
investments freeze for economic reasons is certainly possible. An optimistic scenario with 
accelerating productivity and GDP growth rates looks less likely at this point, unless Nordhaus’s 
(2021) ultimate AI scenario becomes a reality: AI automating the automation of production processes. 
Researchers have already taken steps in that direction (Lu et al, 2024). 

Less dramatic intermediate scenarios look more likely. Technological change in computer hardware, 
software and AI model architecture may bend the GenAI scaling law of Kaplan et al (2020) towards 
increasing returns to scale. That could fend off, or at least postpone, the economic-freeze scenario. 
Moreover, the scaling law applies to GenAI models only. They may be replaced by other types of AI 
model that will be less dependent on human-generated data for training. They may generate their own 
learning and knowledge. 
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