Central banks normally accept debt of their own governments as collateral in liquidity operations without reservations. This gives rise to a valuable liquidity premium that reduces the cost of government finance. The ECB is an interesting exception in this respect. It relies on external assessments of the creditworthiness of its member states, such as credit ratings, to determine eligibility and the haircut it imposes on such debt. We show how such features in a central bank’s collateral framework can give rise to cliff effects and multiple equilibria in bond yields and increase the vulnerability of governments to external shocks. This policy can potentially induce sovereign debt crises and defaults that would not otherwise occur. The success of the ECB’s temporary suspension of these features of its collateral framework during the pandemic illustrates the practical relevance of this mechanism.

Keywords: monetary policy, government finance, yields, liquidity premium, default premium, collateral, cliff effect, multiple equilibria

The collateral framework of a central bank consists of the set of rules that determine what assets are eligible as collateral for securing liquidity from the central bank, and the terms of the associated credit operation. For any central bank, the collateral framework is a critical component of monetary policy strategy. A well-designed collateral framework can facilitate the smooth transmission of monetary policy and protect against financial vulnerabilities. Conversely, a

We thank Steven Cecchetti, Bill English, Hans Gersbach, Charles Goodhart, Robert King, Hans-Helmut Kotz, Deborah Lucas, Kumar Rishabh, Jeremy Stein, and Philip Turner for helpful discussions and comments.

Yvan Lengwiler is a Professor of Economics and Finance at the University of Basel (E-mail: yvan.lengwiler@unibas.ch). **Athanasios Orphanides** is a Professor of the Practice of Global Economics and Management at the MIT Sloan School of Management (E-mail: Athanasios.Orphanides@mit.edu).
poorly designed collateral framework can induce frictions and potentially cause a financial crisis.

Collateral frameworks vary across central banks, reflecting differences in institutions and the structure of the financial system across economies (BIS 2013). One important commonality is that almost all central banks accept debt of their own governments without reservations. This makes government debt the most liquid asset in the economy, other than a central bank’s own reserves, and gives rise to a valuable liquidity premium that reduces the cost of government finance. This favorable treatment of sovereign debt in a central bank’s collateral framework is also a key reason why in advanced economies sovereign debt can enjoy the status of a “safe asset.”

The ECB is an interesting exception in this respect. The ECB is the central bank of a monetary union serving multiple states, and its treatment of sovereign debt of its own governments is unique. It relies on external assessments of the creditworthiness of its member states, such as credit ratings, to determine the eligibility of government debt and the haircut it imposes on eligible debt. If sovereign debt has a high credit rating, the ECB accepts it as collateral without reservations and with negligible haircuts. With somewhat lower credit ratings, the ECB applies higher haircuts, reducing the liquidity premium. Below some credit rating threshold, the ECB considers sovereign debt ineligible as collateral for its monetary policy operations. ¹ The loss of eligibility creates a cliff effect. ² The precise thresholds for eligibility and the haircuts applied on eligible assets reflect discretionary decisions of the ECB Governing Council. ³

This unique feature of the treatment of sovereign debt in the ECB’s collateral framework has attracted some attention since the Global Financial Crisis (GFC), in the context of tensions in euro area sovereign debt markets that have been unlike any experienced in other advanced economies. ⁴ Following the introduction of the euro in 1999 and until the GFC, euro area sovereign debt markets operated similarly to markets of other advanced economies. At the time, it was widely believed that the ECB would accept sovereign debt of euro area member states as collateral without hesitation, in line with practices in place before the introduction of the euro. Monetary policy was smoothly transmitted in all member states of the euro area in a similar fashion through the term structure of sovereign debt. Changes in monetary policy were reflected in current and future expected interest rates (e.g., as summarized in the term structure of Overnight Indexed Swap [OIS] rates) and were transmitted almost one-for-one to the term structure of sovereign debt, as in all other advanced economies.

¹. The ECB introduced this eligibility condition for government debt in 2005. At the time, the threshold corresponded to an A credit rating (Orphanides 2017). During the GFC, it was adjusted to BBB.

². For example, in 2019, a downgrade from BBB to BB would raise the haircut on a government bond with 5–7 year maturity from 10% to 100%. A smaller step increase, from 2% to 10%, would be associated with a downgrade from A to BBB. ECB (2019) provides the complete table of haircuts on eligible assets.

³. The ECB’s discretionary authority, which is far broader than that of peer central banks, stems from Article 18 of the Statute, see Lengwiler and Orphanides (2020).

Spreads between sovereign yields and OIS were very small, as would be expected with a smooth monetary policy transmission process, and all these economies had well-functioning sovereign debt markets. Since the GFC, however, this has changed drastically. Figure 1 shows the spreads of government bond yields and the OIS rate at the 10-year horizon for the euro area’s four largest member states. Multiple episodes of spikes and reversals are visible, with disruptive changes in premia for some member states, despite efforts by the ECB to contain these disruptions through various emergency programs. 5

These spreads reflect numerous elements, importantly liquidity and potential default premia. Of course, liquidity and default premia may be interrelated and, in equilibrium, may reflect fundamental economic factors as well as the central bank’s collateral framework.

In the case of the euro area, it has been argued that at least some of the observed changes in spreads since the GFC could not be attributed to economic fundamentals. 6 Reflecting on his experience as ECB Vice President, Vitor Constâncio recounted

5. The first of these was the Securities Market Programme (SMP) introduced on May 10, 2010 (ECB 2010). The latest is the Transmission Protection Instrument (TPI), introduced on July 21, 2022 (ECB 2022c).

that the sovereign debt tensions in the euro area could be interpreted as arising from a “demotion” of sovereign debt from the safe asset status it enjoyed before the GFC:

“The issue stems from the fact that the demotion of national public debt to debt with default risk opens the door, as in any other asset market, to episodes of acute liquidity stress with investors panicking or speculating, leading prices and yields to levels not justified by changes in fundamentals.” (Constâncio 2018)

In this paper, we explore the role of the central bank’s collateral framework in determining government bond yields and spreads. As it relates to the ECB, this exploration can be useful in assessing whether aspects of the ECB’s collateral framework may have played a role in the “demotion” of sovereign debt described by Constâncio (2018), inadvertently stoking tensions and provoking concerns of default.

To this end, we first study the source of the liquidity premium in sovereign debt in a stylized general equilibrium banking model. In an environment where access to liquidity is valued, a more relaxed collateral policy induces a liquidity premium on government debt that depresses yields. Conversely, a more restrictive collateral policy that reduces the liquidity value of debt requires compensation in the form of higher yields, thus raising the cost of public finance.

We then introduce a cliff effect into the collateral framework to explore conditional eligibility: A collateral framework that considers sovereign debt to be eligible collateral if the economy’s debt ratio falls below some threshold, but not eligible otherwise. Since, other things equal, higher debt ratios are associated with lower credit ratings and overall creditworthiness, this serves as a proxy for linking collateral eligibility to credit ratings. We show that such a contingent eligibility collateral status makes multiple equilibria possible: A “bad” equilibrium with high yields and high debt (with no collateral eligibility) can coexist with a “good” equilibrium with low yields and a low level of government debt.

We further explore the implications of the collateral framework in a stochastic setting with possible default when an adverse shock induces stress on public finances. In this setting, we find that a harsher treatment of government debt in the central bank’s collateral framework makes the sovereign more vulnerable. A harsh collateral framework can induce a default when adverse shocks materialize, even when no default would have become necessary with a more lenient collateral framework. In effect, a harsh collateral treatment of government debt can become the cause of a sovereign debt crisis.

To illustrate the practical significance of this mechanism, we discuss the success of the ECB’s suspension of the cliff effect in its collateral framework prompted by the pandemic, and the reemergence of fragility with the reversal of that decision.

1. THE BASIC LIQUIDITY MODEL

The model features households which are the source of capital, and firms which require the capital to operate. The transfer of capital does not happen directly but
is mediated by banks. Banks collect the capital from the households by offering deposit contracts and provide the capital to the firms through loan contracts. The model draws on the insights developed in the banking literature to justify the essential role of banks in the intermediation of credit, and the role of liquidity in this context (see, e.g., Diamond 1984, Kashyap, Rajan, and Stein 2002, Dang et al. 2017).

The yield that the bank receives from loans is higher than the interest it has to pay on deposits (assumed to be zero for simplicity). Alternatively, the bank can also invest in government bonds. Such bonds have the disadvantage that they (normally) yield less then loans, but the advantage that they are much more liquid.

The concept of liquidity that we use here is central to the model. We envision a situation where banks are in need of liquidiating some of the deposits before the projects that have been financed with the loans are complete (in the spirit of Diamond and Dybvig 1983). The banks will, therefore, have to come up with some form of liquidity to redeem the impatient depositors. In this model, the only source of cash to do this is the central bank that can lend liquidity in repo operations against collateral. This is where government bonds have an advantage. The central bank accepts safe government bonds as collateral with no additional charges and cost involved. The central bank would also accept loans as collateral but this involves additional charges. Before accepting loans as collateral, their quality must be inspected, and this verification process is costly. Bonds allow the bank to avoid the transaction cost involved with pledging intransparent and illiquid loans as collateral.

Effectively, what we call loans in the model represents all kinds of bank assets that the central bank would potentially accept as collateral at worse terms than eligible collateral for monetary policy operations, for example, emergency liquidity assistance.

The banks’ problem boils down to the following tradeoff: How much of the collected deposits should be invested in higher-yielding but less liquid loans, and how much should be invested in lower-yielding, but more liquid government bonds. This tradeoff implies an arbitrage condition that relates the yield spread between loans and bonds to the level of transaction cost that can be avoided by holding bonds instead of loans. This spread is not a risk spread, but a liquidity spread.

1.1 The Banks’ Problem

Households, firms, and banks act as price takers (there is a continuum of each class of agents). Time proceeds in three stages.

In stage 0, households have an endowment D, which they deposit in the banks for safekeeping and to make daily transactions. The deposit rate is zero. Banks use this funding to provide capital K in the form of loans to productive firms, in exchange for a (gross) loan rate R. Banks can also purchase government zero coupon bonds. Bonds cost $1/r$ initially and return one unit in stage 2.

In stage 1, a share λ of households becomes impatient and withdraws their deposits and banks must redeem λD immediately. The only source of liquidity at that time is the central bank. The bank can pledge government bonds as collateral and
receive liquidity from the central bank in a repo operation. The repo rate is again zero.

The central bank accepts the bonds as collateral at market value, but it can impose a haircut \(h \) if it deems the bonds as not perfectly safe. Therefore, the bank can borrow \((1 - h)B/r \) liquidity by pledging bonds with face value \(B \) in a repo transaction.

If the bank does not have enough bonds to cover the need for liquidity, it can also pledge loans \(K \). The central bank does provide liquidity against this collateral, but will inspect the quality of the collateral for a cost, paid for by the bank. The cost is \(\xi \) per unit of collateral that is pledged. These costs are not a profit for the central bank but constitute resources the central bank uses to verify the appropriateness of the collateral.

Finally, in stage 2, loans, bonds, and repos mature, and banks return deposits to households.

Note that the assumptions of zero deposit and repo rates could easily be relaxed but they have no effect in this model, so we leave them aside to keep the model as simple as possible. Moreover, banks could also hold cash in their vault to accommodate the liquidity they will require in stage 1. However, as long as the return rate on bonds is large enough, bonds dominate vault cash. The ability of banks to hold vault cash imposes a lower bound on the bond yield. As long as this lower bound is observed, banks would not willingly hold on to cash. We are not concerned with the difficulties of the lower bound in this paper, so we do not allow banks to hold vault cash in this model.

\[
D = K + \frac{B}{r}, \quad \text{(bank balance sheet)}
\]

\[
L = \frac{(1 - h)B}{r}, \quad \text{(available liquidity from repos)}
\]

\[
V = \xi \max\{0, \lambda D - L\}, \quad \text{(cost of liquidity)}
\]

\[
\pi = RK + B - D - V. \quad \text{(bank profit)}
\]

\(D \), the amount of endowments or initial deposits, is simply a scale for the model. There is no harm in assuming that \(D = 1 \).

\(L \) is the amount of liquidity banks can get by pledging government bonds as collateral in a repo with the central bank. Note that the marginal cost of liquidity depends on whether \(L \) exceeds the need for liquidity \((\lambda D) \) or not. If a bank has sufficient bonds so that it can cover all its liquidity need with bonds, then it will not have to use the more costly form of collateral and the marginal cost of liquidity will be zero. In fact, in that case, bonds have no liquidity value at the margin, and we should not expect a liquidity premium in equilibrium.
We will later impose an assumption that rules out this uninteresting case. For the moment, just assume that $\lambda D > L$. Substituting then yields the objective function of the banks

$$\pi = R \left(D - \frac{B}{r} \right) + B - D - \xi \left(\lambda D - (1 - h) \frac{B}{r} \right).$$

The first-order condition (optimizing over B) then yields an arbitrage condition

$$r = R - (1 - h) \xi.$$ \hspace{1cm} (1)

This condition shows that bonds will enjoy a liquidity premium $(1 - h) \xi$ over loans. The reason for this is that liquid assets are scarce: Banks are willing to accept a lower return by investing into bonds in exchange for marginally reducing the transaction cost ξ they would incur to obtain liquidity from loans.

1.2 General Equilibrium

Next, we introduce a role for public finance in production to close the model and study its general equilibrium properties. We choose to do this in a very simple manner. In effect, we posit that the government issues debt to finance the provision of public goods that serves as an input of production, together with private capital, which is financed by bank loans.

It is useful to describe the events of the three stages of the model again but adding the behavior of firms and the government treasury that closes the model. The new parts are set in italics below.

In **stage 0**, households have an endowment D, which they deposit in the banks for safekeeping and to make daily transactions. The deposit rate is zero. Banks use this funding to provide capital K in the form of loans to productive firms, in exchange for a (gross) loans rate R. Banks can also purchase government zero coupon bonds. Bonds cost $1/r$ initially and return one unit in stage 2. The **government issues the bonds in order to finance public goods $G = B/r$**. The public goods affect output Y of the productive sector.

The intermediate **stage 1** remains unchanged: a share λ of households withdraws deposits, the banks acquire this liquidity with repo operations with the central bank, pledging government bonds and, as a supplement, loans as collateral.

In **stage 2**, loans, bonds, and repos mature, and banks return deposits to households. **Banks distribute their profits to the households, which are (implicitly) the owners of the banks. Firms do not make profit due to constant returns to scale. Moreover, the government taxes households in order to be able to redeem the bonds.**

Four additional equations describe the complete situation,

$$G = \frac{B}{r},$$

(public funding)
\[Y = R'K, \]
(production function)

\[R' = \begin{cases} R > 1 & \text{if } G \geq \gamma D, \\ 1 & \text{otherwise}, \end{cases} \]
(productivity of capital)

\[\tau Y = B. \]
(taxation)

\(G \) denotes the funds that the government collects by issuing bonds. The government produces some vital public goods that are needed for the private economy to operate: a judicial system, basic security, possibly some physical infrastructure, and so on, essentially a functioning government. We assume here that the government finances these expenses by issuing debt. It will tax at the end of the game with a proportional income or consumption tax on the households.

The production function is particularly simple here. It exhibits constant marginal returns to private capital \(K \). This is the only factor that the firm controls, hence the firm operates under constant returns to scaling the inputs it controls and, therefore, makes no profit.

Furthermore, we assume that there is effectively no economic activity if public finance falls short of \(\gamma D \). We can think of this amount of public activity as the cost of the minimum necessary infrastructure that a private market economy requires. In that case, the return on private capital is \(R > 1 \), capturing the value added that the firms create. If the fundamental public goods are not provided, private production is not possible, and firms are unable to produce added value (\(R' = 1 \)).

1.3 Social Welfare and Scarcity of Liquidity

The private economy requires public goods in the amount \(\gamma D \) that can only be provided by the state. Since providing more public goods than what is necessary would crowd out private investment, a natural benchmark is to focus on the minimal state, that is, \(B/r = \gamma D \). The alternative is to have no state, \(G = 0 \), and autarky, where households just consume their endowment.

In autarky, welfare is \(W = D \). With a functioning state, welfare is the consumption that is made possible, net of the resources that are used to provide liquidity to the banks \(V \),

\[W := Y - V = \begin{cases} R(1 - \gamma)D - \xi(\lambda - (1 - h)\gamma)D, & \text{if } G \geq \gamma D, \\ D, & \text{otherwise.} \end{cases} \]
(2)

7. Issuing more bonds than necessary would provide more safe liquid assets for banks to use as collateral, but we show in Appendix A that doing so strictly reduces welfare in this model.
In Appendix A, we establish the following sufficient condition for the private economy with the provision of the public good to be preferred to autarky.

Assumption 1 (private economy). \(R(1 - \gamma) > 1 + \xi \lambda. \)

Since autarky removes everything that is potentially interesting in this model, we make this assumption. Furthermore, we also assume that the government is smaller than the share of early withdrawing depositors, so that bond supply is not sufficient to cover the banks’ liquidity requirement.

Assumption 2 (small state). \(0 < \gamma < \lambda < 1. \)

This assumption guarantees that liquidity is scarce in equilibrium \((\lambda D > L) \), so that bonds will enjoy a strictly positive liquidity premium. With this assumption, liquidity is valuable, and a liquidity premium emerges in equilibrium, leading to the following result. 8

Result 1 (liquidity premium). If assumptions 1 and 2 hold, the yield on government bonds is \(r = R - (1 - h)\xi. \)

1.4 Why Does a Haircut Have a Social Cost?

A restrictive collateral policy \((h > 0) \) increases the yield on government bonds \(r \). But welfare, according to (2), is independent of \(r \). It does not matter how expensive the financing cost of the necessary public goods are, for two reasons: first, the amount of resources that are used for public goods is fixed in this model \((\gamma D)\) and is independent of \(r \), so the amount of capital that is available to the private sector is independent of \(r \) and, therefore, independent of \(h \). Second, the financing cost \(r \) of the government does indeed affect the extent of necessary taxation of households in stage 2, but a higher \(r \) is also a source of income for banks which hold the bonds. Thus, a higher \(r \) only results in a redistribution from households to banks, and if we assume that households own the banks, then there is not even a redistribution.

Turning to taxation, it is true that a larger haircut increases the need for taxation, and one could of course make an argument that taxing more heavily will create more deadweight loss. After all, all taxation is distortionary in practice, so this is one realistic source of welfare cost of haircuts. But we have ignored the welfare cost of taxation in this model, yet a haircut is still detrimental to welfare according to (2). Why is this so?

The reason is that a restrictive collateral policy has real resource cost in that it increases the banks’ transaction cost of repos. A higher haircut makes the liquid asset more scarce, so that banks have to rely to a larger extent on using illiquid loans as collateral. But using loans for that purpose is socially costly because it requires the use of resources, what we have called “verification cost.”

8. This result together with assumption 1 implies a lower bound for the yield, \(r > \frac{1 - (1 - \gamma)}{1 -\gamma \lambda}. \) This ensures that \(r > 0, \) but it does not rule out \(r < 1, \) that is depending on parameters, a negative interest rate on government debt is possible.
2. TOUGH LOVE: CONDITIONAL ELIGIBILITY

The model of the previous section implies a straightforward connection between collateral policy h and government bond yields r. A more restrictive collateral policy (positive h) simply reduces the liquidity value of the bonds, which manifests in a higher yield.

But why would a central bank impose a haircut on government bonds? In the model, government bonds are by assumption free of default risk (we will come back to this assumption in Section 4). Of course, in practice, some (small) risk always pertains, so a central bank might want to overprotect its balance sheet from any actual or perceived credit risk.\(^9\)

A common measure of government solvency is the debt to GDP ratio. Other things equal, higher debt ratios are associated with lower overall creditworthiness, so we use the debt ratio in the model as a proxy for conditioning collateral eligibility to credit ratings in the simplest manner. We, therefore, examine the equilibrium outcomes when collateral eligibility is determined by comparing a sovereign’s debt ratio to some threshold $\bar{\beta}$. Debt is eligible, with no haircuts, if the debt ratio is below the threshold and ineligible (i.e., 100% haircut) if the debt ratio exceeds the threshold.

2.1 The Eligibility Schedule and Multiple Equilibria

The debt to GDP ratio in the model is given by $\beta := B/Y$; B is the amount due in stage 2 and Y is output. The central bank defines a threshold $\bar{\beta}$,

$$h = \begin{cases}
0 & \beta \leq \bar{\beta}, \\
1 & \beta > \bar{\beta}.
\end{cases} \quad (3)$$

The bond is accepted with no haircut if the debt to GDP ratio is below the level acceptable to the central bank; it is not accepted otherwise. If the bond is eligible collateral, it enjoys a liquidity premium (result 1), which helps keep the government debt ratio low. If the bond is not considered eligible collateral by the central bank, the interest rate the government has to pay is high, which raises the debt ratio. This gives rise to multiple equilibria.

Result 2 (multiple equilibria). Let $\hat{\beta}$ be the debt to GDP ratio of the government if it can finance at the low rate $r = R - \xi$, and $\check{\beta}$ be the corresponding ratio if it has to finance at the high rate R,

$$\hat{\beta} = \frac{\gamma}{1 - \gamma} \cdot \frac{R - \xi}{R} \quad \text{and} \quad \check{\beta} = \frac{\gamma}{1 - \gamma}.$$

9. However, note that the balance sheet of the central bank is not directly at risk, even if the collateral should fail. The cost of the defaulting loan would be transferred to the borrowing bank. So, unless the borrowing bank also collapses, the central bank does not shoulder the loss. Its default exposure is essentially nil.
If \(\hat{\beta} < \bar{\beta} < \tilde{\beta} \), the model has two equilibria (plus possibly a mixed one).

\[
\begin{align*}
 h &= 0 \quad \text{with} \quad r = R - \xi \quad \text{and} \quad \beta = \hat{\beta}, \quad \text{(good equilibrium)} \\
 h &= 1 \quad \text{with} \quad r = R \quad \text{and} \quad \beta = \tilde{\beta}. \quad \text{(bad equilibrium)}
\end{align*}
\]

If \(\hat{\beta} < \bar{\beta} \), only the good equilibrium exists; if \(\bar{\beta} < \tilde{\beta} \), only the bad equilibrium exists.

In the presence of the multiplicity induced by the cliff, the equilibrium that will obtain is driven purely by beliefs. The reasoning is captured by Figure 2. The good equilibrium is marked with ➀. If the banks in stage 0 believe that the debt to GDP ratio will be smaller than the threshold set by the central bank (\(\beta < \hat{\beta} \)), they believe that the bonds will not be subject to a haircut (\(h = 0 \), top right quadrant of Figure 2) and will be eligible collateral, and so they are willing to purchase the number of bonds that the government needs at a low yield \(r = R - \xi \) (top left quadrant). Because of this low financing cost, the debt to GDP ratio will indeed satisfy the central bank’s threshold (bottom half of Figure 2), the central bank will accept the bonds as collateral, and the belief of the banks is vindicated.

The bad equilibrium is marked with ❼. Banks believe in stage 0 that the debt to GDP ratio will be unacceptable to the central bank in stage 1 (\(\beta > \hat{\beta} \)). They also
believe that the bonds will not be eligible collateral \((h = 1)\). In that case, the price of the bonds settles on a high yield \(r = R\), the debt to GDP ratio of the government is high (due to the substantial interest burden) and the central bank does not accept these bonds as collateral. As a result, the pessimistic expectation is again vindicated.

Figure 3 summarizes the resulting equilibria in \(h-\beta\) space. The step function traces the collateral policy, as a function of debt (reproduced from the top right quadrant of Figure 2). The upward-sloping line shows the equilibrium relationship between the demand for bonds and the haircut, \(h\), reflected in the top-left and bottom-left quadrants of Figure 2.

Multiplicity requires the cliff to be “at the right spot,” that is, \(\hat{\beta} < \bar{\beta} < \check{\beta}\). The size of this interval increases with the liquidity premium \(\xi\). Let the socially desirable size of government be \(\gamma = 0.4\), which is roughly the size of government spending in advanced economies. This already implies \(\check{\beta} = 2/3\). Let us further assume that \(R = 1.1\) and that the return on government debt that enjoys perfect liquidity is 0% \((R - \xi = 1\), implying \(\xi = 0.1\)). These values imply \(\hat{\beta} = 0.61\).

2.2 Carrying Over Debt

Our model is a one period model (with several stages). As such, strictly speaking, the world begins, the game plays out, and the world ends. Yet, it is of interest to

10. Observe that these debt to GDP ratios are smaller than the debt to GDP ratios of most EU countries today (using annual data). Debt to GDP is a level divided by a flow. Our model is a one period model, and the interpretation of GDP is not limited to annual GDP. For this reason, the interpretation of the level of \(\beta\) depends on the length of the period: if one period in the model corresponds to two versus one calendar year, the debt to GDP measure \(\beta\) is reduced by half without the situation changing.
Fig 4. Multiple Equilibria with Pre-Existing Debt.

draw implications that can capture an evolving debt dynamic. We do not model a repeated game, but we can add an element of this dynamic by introducing the notion of pre-existing debt. Posit that the government starts “the period” with some debt accumulated in the past. This debt needs to be rolled over, adding to the deficit that needs to be financed in the current period.

Let B_0 be existing bonds from previous periods. We can think of these bonds as bonds that mature and need to be rolled, or we can think of them as longer-term bonds that do not currently mature. In either case, they contribute to the debt to GDP that is relevant for the decision of the central bank to accept the newly issued bonds as collateral. The debt to GDP ratio is now $\left(B_0 + B \right) / Y$, or $\beta_0 + \beta$, with $\beta_0 := B_0 / Y$. The bonds are eligible as collateral if $\beta_0 + \beta \leq \bar{\beta}$, which is equivalent to reducing $\bar{\beta}$ by β_0.

In other words, result 2 applies essentially unaltered. The limits of the regions are shifted, though,

$$\bar{\beta} = \frac{\gamma}{1 - \gamma} \cdot \frac{R - \xi}{R} + \beta_0 \quad \text{and} \quad \hat{\beta} = \frac{\gamma}{1 - \gamma} + \beta_0.$$

A larger pre-existing debt can, therefore, move an economy from the “good equilibrium only” region to the “multiple equilibrium” region and further to the “bad equilibrium only” region.

Figure 4 provides a graphical illustration of this result. The central bank collateral policy, with threshold $\bar{\beta}$, may be set so that in the absence of any pre-existing debt, there is no multiplicity of equilibria and only the “good” equilibrium is supported. This is the case (a) depicted in the figure that features only the good equilibrium \circ. The same collateral policy, however, will give rise to a multiplicity if, for whatever reason, the government enters the period with a sufficiently high pre-existing debt. This is case (b) in which both types of equilibria, \circ and \circledast, are possible. If the
pre-existing debt is even larger, we enter case (c) in which the good equilibrium ➀ is no longer valid.

This progression illustrates that the unintended consequence of introducing a cliff effect in the central bank’s collateral policy may not become apparent at the time when it is introduced if debt ratios are initially fairly low. They can, however, become apparent following an adverse shock that raises the debt ratio in the economy, for example, as materialized in virtually all advanced economies in the aftermath of the GFC.

3. EQUILIBRIUM DEFAULT

Next, we turn our attention to the equilibrium relationship between liquidity and default premia with an illustrative example that shows how a harsh collateral treatment of government debt can reduce resilience to adverse shocks and induce default risk. To do so in the simplest possible manner, we return to the model in Section 1, where the collateral framework is described by a constant haircut, h, without a cliff effect.

The yield on government bonds is described by result 1. The government has issued debt with face value B, and it will have to tax households by that amount. The household’s income is Y, so the tax rate will be $\tau = B/Y$ (the debt or deficit to GDP ratio).

In practice, there is a limit to the ability of the government to tax. For instance, it is obvious that the tax rate cannot be greater than 100%. The true limit is very likely considerably lower. In fact, if $\tau R < 1$, it would be better not to have a private economy and a government in the first place. We assume that the government cannot collect more than $\bar{\tau}Y$ tax revenue for some finite tax ceiling $\bar{\tau}$, and this value must be weighted against the need to redeem the bonds, B.

More precisely, if the required tax rate $\tau = B/Y$ exceeds the ability to tax $\bar{\tau}$, the government will not be in a position to fully redeem the maturing bonds, and it will have to partially default. This possibility introduces a default premium into the equilibrium yield on bonds, which itself increases the likelihood of default, as financing the operations of the government becomes more costly.

3.1 Stochastic Crisis and Tax Ceiling

Assume that, with some small probability p, the economy faces a serious crisis in which some output sD is lost.11 This shock occurs before the first leg of the repos

11. The output shock is scaled with D to keep everything in this model scalable.
have been initiated. More precisely, with some (small) probability \(p \), the economy will be hit by a (large) shock \(s \),

\[
\tilde{Y} = RK - \tilde{s}D, \quad \text{where} \quad \tilde{s} = \begin{cases}
0 & \text{with probability } 1 - p, \\
-1 & \text{with probability } p.
\end{cases}
\] (4)

With probability \(p \), \(sD \) of the output “is lost.” This is meant to capture a deterioration of the taxable base, due to a macroeconomic shock or crisis that can raise questions about debt sustainability.12

The maximum tax revenue is \(\bar{\tau}\tilde{Y} \), and is, therefore, smaller if the crisis materializes. If the government cannot completely redeem the bond (i.e., \(B > \bar{\tau}\tilde{Y} \)), it will partially default. The recovery rate of the bond is given by

\[
\tilde{\delta} := \min \left\{ 1, \frac{\bar{\tau}RK - \tilde{s}D}{B} \right\}.
\] (5)

We denote the recovery rates conditional on no crisis with \(\delta_0 := \tilde{\delta}|_{\tilde{s}=0} \), and conditional on the crisis occurring as \(\delta_1 := \tilde{\delta}|_{\tilde{s}=s} \).

The sequence of events is as follows:

Stage 0: Households deposit their endowment with banks. Banks provide loans to firms and purchase bonds from the government.

Stage 1: The adverse output shock (4) materializes with probability \(p \).

Stage 2: Some depositors withdraw. The first leg of the repos is made so that the banks can fulfill the withdrawals.

Stage 3: Households are taxed, all contracts resolve (the bonds are redeemed, loans are repaid, the second leg of the repos takes place, profit of the banks is distributed to the households), and output is sold to the households.

3.2 Liquidity and Risk Premia

Let \(\bar{\delta} := \min\{1, \bar{\tau}\tilde{Y}/B\} \) be the recovery rate. The banks’ profit function is then

\[
\bar{\pi} = RK + \bar{\delta}B - D - V.
\] (6)

We assume here that \(B/r \geq \gamma D \) (the private economy works).

Banks choose \(B \) to maximize expected profit. This yields an FOC and a modified arbitrage condition

\[
r = \frac{R - (1 - \bar{h})\bar{\xi}}{E[\bar{\delta}]}, \quad \text{FOC and Modified Arbitrage Condition} \]

12. The shock could just as well be modeled as a productivity shock. With random productivity \(\bar{R} \), the rate on loans would be \(E[\bar{R}] \), but nothing would fundamentally change.
assuming \(B/r < \lambda D \) (the bank does not hold excess liquidity). This equation is the same as (1), with the addition of the expected recovery rate \(E[\tilde{\delta}] \).

3.3 Equilibrium

The liability of the government is \(B = r\gamma D \). The maximum tax receipts are \(\bar{\tau}Y = \bar{\tau}(R(1 - \gamma) - \tilde{s})D \). Partial default \((\delta < 1)\) happens if the former exceeds the latter,

\[
\tilde{s} = \min \left\{ 1, \frac{\overline{\tau}R(1 - \gamma) - \tilde{s}}{r\gamma} \right\}
\]

with \(r \) determined by (7). This is a fixed point problem because \(\tilde{s} \) depends on \(r \) and \(r \) depends on \(E[\tilde{\delta}] \). Let us get directly to the solution. The way to get to this solution is slightly technical and provides little additional insight. This material is, therefore, relegated to an Appendix.

Result 3 (liquidity and default premium). Define

\[
\tilde{s} := \frac{R\overline{\tau}(1 - \gamma) - \gamma(R - (1 - h)\xi)}{\overline{\tau}} \quad \text{and} \quad \tilde{\delta} = \frac{\tilde{s}}{p}.
\]

(a) If \(s < \tilde{s} \), there is no default and \(r = R - (1 - h)\xi \).

(b) If \(\tilde{s} < s < \tilde{\delta} \), the equilibrium yield on government bonds is

\[
r = \frac{R - (1 - h)\xi}{E[\tilde{\delta}]},
\]

where

\[
E[\tilde{\delta}] := \frac{(R - \xi(1 - h))(1 - p)\gamma}{(R - \xi(1 - h))\gamma - p\overline{\tau}(R(1 - \gamma) - s)}.
\]

(c) If \(\tilde{s} < s \), the only equilibrium is autarky and a collapse of the state.

(d) Finally, note that

\[
\frac{\partial E[\tilde{\delta}]}{\partial h} < 0, \quad \frac{\partial \tilde{s}}{\partial h} < 0, \quad \text{and} \quad \frac{\partial \tilde{\delta}}{\partial h} < 0.
\]

The proof is in Appendix B. The result states that the depth of the crisis defines the qualitative properties of the equilibrium. If the crisis is benign \((s < \tilde{s})\), the government is able to fully repay the debt even in crisis. Hence, the recovery rate is 100% and the equilibrium is not affected by the tax ceiling. If the depth of the potential crisis is very large though \((\tilde{s} < s)\), the state cannot finance its operations and the economy even if there is no crisis and the only equilibrium is autarky.

The intermediate case is the most interesting one. In that case \((\tilde{s} < s < \tilde{\delta})\), government finances are fundamentally sound. Partial default occurs, however, if the economy is hit by a severe crisis. Thus, government bonds exist, but they are not perfectly safe, \(E[\tilde{\delta}] < 1 \). The expected recovery rate \(E[\tilde{\delta}] \) increases in \(\overline{\tau} \). This implies that the
default premium on the bond increases, the more restrictive the tax ceiling of a country is (which is not surprising).

The collateral framework affects the quantitative feature of the intermediate case, and it affects the boundaries where the intermediate case is valid. First,

$$\frac{\partial E[\hat{\delta}]}{\partial h} < 0$$

means that a more restrictive collateral framework (larger h) decreases the expected recovery rate of government bonds. The yield on bonds, therefore, increases for two reasons: first, the liquidity premium of the bond is reduced due to the direct effect of the reduced liquidity value that we know already from the basic model of Section 1. In addition, the reduced recovery rate of the bond pushes the yield on the bond further up still due to the higher default premium that the restrictive collateral framework induces.

Second,

$$\frac{\partial \hat{s}}{\partial h} < 0 \quad \text{and} \quad \frac{\partial \hat{s}}{\partial h} < 0$$

means that a more restrictive collateral framework makes the government more vulnerable to smaller crises. If h is small, the maximum crisis that the government can withstand without having to partially default (or without collapsing altogether) is greater; as h increases, the ability of the government finances to withstand even medium sized crises is put into question.

Figure 5 illustrates the effect of the haircut in the equilibrium yield on government bonds. In this example, when the haircut is low, we are in case (a) of result 3 where there is no default. In this region, the haircut affects the liquidity premium only. As the haircut becomes more important, we enter case (b) and default will happen if the crisis materializes. As a result, a default premium is added to the yield as well.

In summary, quite different outcomes may obtain in the government bond market, including equilibria with and without risk of default. These outcomes correspond to alternative variations of the central bank’s collateral framework and are not driven by differences in the intrinsic soundness of government finance.

4. FISCAL DISCIPLINE

It is highly unusual for a central bank to set eligibility criteria for accepting debt of its own government as collateral for monetary policy operations. To our knowledge, the ECB is the only central bank that does. The ECB is in a special position, though, because it serves as the central bank of multiple countries and, therefore, deals with different issuers of public debt. When the monetary union was formed and the euro was introduced, the ECB accepted the government debt of all member states as eligible collateral without conditionality. Indeed, the government debt of all member
states enjoyed the status of a safe asset, as had been agreed by the member states and incorporated in the European Union’s Capital Requirement Directives (CRD) (Hannoun 2011).

Nonetheless, according to the Treaties, the ECB retained the discretionary authority to decide on its own what rules to apply for eligibility of any collateral, including government debt of individual member states.

Using this authority, the ECB decided to change its collateral eligibility framework in 2005 in response to an agreement by governments to weaken the euro area’s fiscal framework. This weakening generated concerns that in future euro area governments would not be as fiscally disciplined as they had agreed to be when the euro

13. For example, according to the CRD, holdings of euro-denominated government debt of any euro area member state were not subject to exposures limits and were assigned a zero risk weight for the purposes of prudential regulation. (Directive 2006/48/EC of the European Parliament and of the Council of June 14, 2006.)

14. The weakening of the fiscal framework was documented by the ECB at the time (ECB 2005).
was launched. Before the introduction of the euro, exchange rate risk was believed to serve this disciplining function. According to the ECB, since the euro eliminated exchange rate risk and associated interest rate premia, the fiscal discipline exerted by financial markets was blunted: “[t]he adoption of a common currency eliminates the exchange rate risk and the associated interest rate risk premia among the participant countries, thus blunting the discipline normally exerted by financial markets on governments’ fiscal behaviour.” (ECB 2005). While the euro area’s original fiscal rules provided assurance that fiscal discipline could be maintained even in the absence of interest-rate premia due to exchange rate risk, once the fiscal rules were weakened, the ECB assessed that another mechanism would be needed to enforce fiscal discipline. One available mechanism was the ECB’s collateral framework, which the ECB could adjust unilaterally, using its discretionary authority.

The appropriateness of using the ECB’s discretionary authority to enforce fiscal discipline is not obvious. One argument is that the ECB is expected to play such a role in the euro area—that enforcing fiscal discipline is part of the ECB’s broader mandate. If so, the introduction of credit ratings to determine the collateral eligibility of government debt might be seen as a tool allowing the ECB to trade off conflicting objectives. A collateral framework that reduces the liquidity value and compromises the safe asset status of government debt may be a second-best solution if the ECB is expected to enforce fiscal discipline.

However, according to the European Union Treaty, it is the European Commission that has the task of enforcing EU law, including provisions relating to fiscal discipline of member state governments. Indeed, this was pointed out at the time the ECB was considering this issue, including by members of the ECB Executive Board:

“It has been recently argued that the ECB should use its collateral policy as a sanction to exert fiscal discipline […] Although superficially appealing, this suggestion would be misguided. […] it is clear that the design of the Stability and Growth Pact and its implementation are governmental responsibilities, to be controlled by parliaments. […] it is not and cannot be the ECB’s role to enforce fiscal discipline and to correct shortcomings in the implementation of the Stability and Growth Pact. Attempting to do so would politicise the ECB’s operations and ultimately threaten its independence […]” (Issing 2005).

In the event, the ECB went ahead with the change in its collateral framework, adopting the use of credit rating thresholds for determining collateral eligibility of government debt. Whether the economic consequences of this change for euro area economies was sufficiently appreciated when this decision was made remains unclear.

5. PRACTICAL RELEVANCE: LESSONS FROM THE COVID-19 PANDEMIC

Our simple model illustrates that the introduction of external assessments such as credit ratings to determine the eligibility of government debt as collateral can cause
In March 2020, as the potential costs of the health emergency became evident, government bond markets experienced significant disruptions around the world. In the euro area, spreads widened across maturities, raising the prospect of yet another major crisis. As can be seen in Figure 6, in early March, the spreads between Italian and German government bond yields widened by over 1 percentage point within a few days. In an attempt to avert a crisis, on March 18, 2020, the ECB introduced the Pandemic Emergency Purchase Programme (PEPP), and started purchasing government debt (ECB 2020a). While the announcement of government bond purchases narrowed spreads for a few days, the success of the PEPP proved short-lived. Spreads widened again in April 2020. The fiscal stress induced by the pandemic raised concerns that the debt of some euro area governments would be downgraded and lose its eligibility.

Disruptions in government bond markets that would not otherwise materialize. Are these effects quantitatively important to be of practical relevance, potentially helping explain the disruptions observed in the euro area since the GFC?

In practice, economic fundamentals together with ECB policies—including the collateral framework as well as various bond purchase programs—jointly determine the spreads observed in government bond markets. Parsing out the effects of changes in the collateral framework from other policies is not straightforward. The ECB’s policy response during the pandemic, which included an important, albeit temporary, change in the ECB’s collateral policy, presents an informative case study.

![Figure 6](https://onlinelibrary.wiley.com/doi/abs/10.1111/jmcb.13048)
The cliff effect embedded in the ECB’s collateral framework raised the prospect of a debt roll-over crisis. A crisis was averted only after the ECB addressed this concern directly. On April 22, 2020, the ECB took the unprecedented step of grandfathering eligibility and announcing it would ignore potential downgrades (ECB 2020b). Effectively, the ECB suspended its reliance on credit ratings to determine the collateral eligibility of government debt. The suspension would be in effect until September 2021, but in December 2020, the ECB announced it would be prolonged to June 2022. The result was a dramatic decline in spreads, despite the fiscal stress and deterioration in economic fundamentals due to the pandemic.

As the pandemic abated, it was unclear whether the ECB would embrace the suspension of its reliance on rating agencies on a sustained basis, or not. The uncertainty was resolved on March 24, 2022, when the ECB announced that it would gradually return to its prepandemic collateral framework and reintroduce its reliance on credit ratings starting 2 years later, in March 2024 (ECB 2022a). As can be seen in the figure, spreads widened in response to this policy change, and have been more volatile since then.\(^{16}\)

The disruption in government bond markets following the March 24 decision was sufficiently concerning that in an emergency meeting on June 15 the ECB announced that it would take additional steps to address it (ECB 2022b). A new emergency program, the Transmission Protection Instrument (TPI), was subsequently announced on July 21 (ECB 2022c). As with previous emergency programs associated with bond purchases, the TPI should be reasonably expected to have some partial success. This is confirmed in the figure. However, the TPI did not reverse the widening of the spreads observed after March 24, when the ECB reintroduced the cliff effect in the treatment of government debt in its collateral framework.

This episode suggests that the disruption induced by the cliff effect in the ECB’s collateral framework is quantitatively important and can only be partially mitigated with the introduction of emergency bond purchase programs, such as the SMP or the TPI.

6. CONCLUSION

A central bank’s collateral framework is a critical part of its monetary policy strategy. The primary consideration in designing a central bank’s collateral framework should be the smooth transmission of monetary policy. A well-designed collateral framework can induce a valuable liquidity premium on government debt that reduces the cost of financing the provision of public goods and improves resilience to adverse shocks. This liquidity premium is greatest when the central bank accepts its own government’s debt as collateral in credit operations without reservations.

\(^{16}\) The announced 2-year delay in the re-introduction of credit ratings to determine eligibility implied that debt with maturity up to 2-years at the time of the announcement was not at risk of being declared ineligible by the ECB. As a result, the response of the 2-year spread was delayed.
While almost all advanced economy central banks treat their governments’ debt in this manner, the ECB is an interesting exception. The ECB has decided to use its discretionary authority to adopt a collateral framework that differentiates government debt of the economies it serves on the basis of external assessments of their perceived creditworthiness. Debt of governments with a lower perceived creditworthiness are subjected to higher haircuts in credit operations, which reduces their liquidity value and raises the cost of debt finance. Below some perceived creditworthiness threshold, government debt is declared ineligible and loses its liquidity value completely.

In this paper, we show that introducing external assessments and endogenous measures of perceived creditworthiness in this fashion has some potentially severe inadvertent side-effects. First, this practice gives rise to undesirable cliff effects, which in turn can generate multiple equilibria: A good equilibrium with low debt and high perceived creditworthiness can coexist with a worse equilibrium (from a welfare perspective), with higher debt and lower perceived creditworthiness. Second, in a stochastic environment when an adverse shock to the economy can stress public finances, such a collateral framework can induce an otherwise unnecessary default. In effect, a harsh collateral treatment of government debt can make public finance more fragile than necessary and become the cause of a sovereign debt crisis.

These results reaffirm that central banks must be careful to avoid reliance on mechanistic approaches in their collateral frameworks that may compromise the liquidity value of government debt and reduce resilience to adverse shocks. In the aftermath of the Global Financial Crisis, it was widely recognized that the cliff effects resulting from the use of credit ratings amplify procyclicality and cause systemic disruptions. To address the problem, the Financial Stability Board developed principles for reducing reliance on credit rating agencies such as embedded in the ECB’s collateral framework (FSB 2010). The success of the ECB’s temporary suspension of the cliff effect in its collateral framework during the pandemic forcefully illustrated the practical importance of this matter. Recognition of the inadvertent side-effects associated with the treatment of government debt in the ECB’s collateral framework suggests this aspect of the ECB’s policy strategy should be reexamined on a permanent basis (Lengwiler and Orphanides 2020).

From the central bank’s perspective, liquidity and default premia are endogenous. They depend sensitively on the central bank’s collateral framework. Safeguarding the liquidity value of government debt with a well-designed collateral framework is at the core of good central banking practice.

APPENDIX A: FORMAL DERIVATION OF RESULT 1

This appendix follows Section 1 but, unlike in the main text, we do not simply assume that liquid assets are scarce. Instead, we will derive assumption 2 and show that it is sufficient to make bonds scarce as a source of liquidity in equilibrium. We will also show that assumption 1 is sufficient to make the existence of a state advantageous compared to autarky and will furthermore show that it is always
welfare-inferior to create more safe liquid bonds than what is strictly necessary for
the government to function.

A.1 Arbitrage Condition. The model is

\[D = K + B/r, \] \hspace{1cm} \text{(bank balance sheet)}

\[L = (1 - h)B/r, \] \hspace{1cm} \text{(available liquidity from repos)}

\[V = \xi \max\{0, \lambda D - L\}, \] \hspace{1cm} \text{(cost of liquidity)}

\[\pi = RK + B - D - V, \] \hspace{1cm} \text{(bank profit)}

\[G = \frac{B}{r}, \] \hspace{1cm} \text{(public funding)}

\[Y = R'K, \] \hspace{1cm} \text{(production function)}

\[R' = \begin{cases} R > 1 & \text{if } G \geq \gamma D, \\ 1 & \text{otherwise}, \end{cases} \] \hspace{1cm} \text{(productivity of capital)}

\[\tau Y = B. \] \hspace{1cm} \text{(taxation)}

Substituting, the objective of the banks is

\[\pi = \begin{cases} R(D - \frac{B}{r}) + B - D - \xi (\lambda D - (1 - h)\frac{B}{r}) & \text{if } \lambda D > L, \\ R(D - \frac{B}{r}) + B - D & \text{if } \lambda D < L. \end{cases} \]

The first-order condition of the banks’ problem then yields an arbitrage condition

\[r = \begin{cases} R - (1 - h)\xi & \text{if } \lambda D > (1 - h)B/r, \\ R & \text{if } \lambda D < (1 - h)B/r. \end{cases} \]

The upper branch applies when bonds are scarce as a source of collateral \((\lambda D > L)\). This is the situation discussed in the text. The lower branch applies when banks do not require loans as collateral and, therefore, never pay the fee \(\xi\). As a result, bonds do not enjoy a liquidity premium as collateral is not scarce.
A.2 Optimal Provision of Bonds. The government wants to assure that the economy can function, that is, it wants to have public finance of at least γD. Of course, having more public finance than this minimum has the drawback that it crowds out more capital from private companies than necessary. Therefore, a natural benchmark is to assume that the government issues bonds so that the necessary size of the public finance is just met, $B/r = \gamma D$.

However, it is not guaranteed that having a functioning economy is preferable to having individual autarky in which all households simply eat their endowment. Social welfare in the autarky economy is D. Social welfare in the functioning economy is output, Y, minus the expected resource cost of providing liquidity, that is, the verification cost of the central bank when accepting loans as collateral, V. This is spelled out in (2) in the text. In addition, if taxation is distortionary, we should also subtract the deadweight loss of taxation, but we ignore this here.

It is straightforward to verify that $W > D$ if and only if R is large enough, $R(1 - \gamma) > 1 + \xi(\lambda - (1 - h)\gamma)$. The required R that is necessary for the top branch of this equation to be valid (because $W > D$) is increasing in h, hence the requirement for the desirability of a functioning economy is more demanding, the larger the haircut h is. Assumption 1 guarantees that this condition is always satisfied, even if $h = 0$. This implies that a welfare maximizing government wants to collect at least γD public funds. The alternative leads to an uninteresting equilibrium in which the productivity of the private economy R does not justify its existence, and in which, the welfare maximizing government would optimally choose not to exist, $G = 0$.

Can there be a reason that the government would want to collect more than the minimum required, $B/r > \gamma D$? The drawback of such a behavior is that the funds allocated to the government will be lacking as productive capital in the private firms. This crowding out will diminish total output. On the other hand, there are also costs involved with the scarcity of liquid assets. Bonds play two roles in this economy. Their primary function is to allow the government to finance public goods. Their secondary benefit is that they facilitate the acquisition of liquidity for banks. Very scarce supply of bonds destroys resources by forcing banks to use loans as collateral in repos and thereby facing larger transaction cost ξ. In other words, it is conceivable that there is a trade-off between crowding out private investment and providing assets to banks to allow them to procure liquidity more cheaply.

Let $sD \geq 0$ be the excess funds that the government collects from issuing $B' > B = r\gamma D$ bonds, that is, $sD = (B' - B)/r$. Welfare is then

$$W = R(1 - \gamma - s)D - \xi(\lambda - (1 - h)(\gamma + s))D.$$

The derivative of W wrt s is:

$$\frac{\partial W}{\partial s} = (-R + \xi(1 - h))D.$$

This is likely to be negative, because $R > 1$, $h \geq 0$, and ξ is not extremely large. Indeed, we know from (1) that at $h = 0$, we have $r = R - \xi$, or $R = r + \xi$. Thus, the
derivative becomes:
\[
\frac{\partial W}{\partial s} = (-r + \xi)D = -rD < 0.
\]

Making \(h > 0 \) decreases \(\partial W/\partial s \) further, so that it can never become positive.

We conclude that the cost of crowding out public loans by issuing excess bonds can never be compensated by the saved transaction cost that is achieved by easing the banks’ liquidity need. Bond supply is, therefore, given by:

\[
B = r\gamma D. \tag{A1}
\]

A.3 Equilibrium Yields. Putting the arbitrage condition (1) and bond supply (A1) together, we find the equilibrium bond yield. The equilibrium yield on government bonds is

\[
r = \begin{cases} R - (1 - h)\xi & \text{if } \lambda > (1 - h)\gamma, \\ \tilde{r} \in [R - (1 - h)\xi, R] & \text{if } \lambda = (1 - h)\gamma, \\ R & \text{if } \lambda < (1 - h)\gamma. \end{cases} \tag{A2}
\]

The first branch is the interesting case when there is indeed a liquidity premium as discussed in the main text. Assumption 2 guarantees that only the first branch of this equation is relevant for arbitrary \(h \), which is result 1.

APPENDIX B: EQUILIBRIUM WITH PARTIAL DEFAULT

The liability of the government is \(B = r\gamma D \). The maximum tax receipts are \(\bar{\tau}Y = \tilde{\tau}\bar{R}(1 - \gamma)D \). Partial default \((\delta < 1) \) happens if the former exceeds the latter,

\[
\delta = \min \left\{ 1, \frac{\tilde{\tau}(R(1 - \gamma) - \tilde{s})}{r\gamma} \right\},
\]

with \(r \) determined by (7),

\[
\delta = \min \left\{ 1, E[\tilde{\delta}] \frac{\tilde{\tau}(R(1 - \gamma) - \tilde{s})}{\gamma (R - (1 - h)\xi)} \right\}.
\]

Define

\[
X := \tilde{\tau}R(1 - \gamma), \quad Y := X - \tilde{\tau}s, \quad Z := \gamma (R - (1 - h)\xi),
\]
and let δ_0 be the recovery rate if the crisis does not materialize, and δ_1 if it does materialize,

$$
\delta_0 = \max \left\{ 1, E[\tilde{\delta}] \frac{X}{Z} \right\}, \quad \delta_1 = \max \left\{ 1, E[\tilde{\delta}] \frac{Y}{Z} \right\},
$$

and by definition,

$$
E[\tilde{\delta}] = (1 - p)\delta_0 + p\delta_1.
$$

This is a system of two equations in two unknowns. Observe that $\delta_1 \leq \delta_0$ by definition. To solve this, we need to distinguish three cases:

(a) $\delta_0 = \delta_1 = 1$. In this case, $E[\tilde{\delta}] = 1$. $\delta_1 = 1$ if and only if $Y \geq Z$, and then $\delta_0 = 1$ as well. In this case, default never occurs due to a combination of a large tax ceiling $\bar{\tau}$, large liquidity value $(1 - h)$, and a not too deep crisis s. In this case, the simpler model of Section 1 still applies and nothing is changed by the introduction of the possibility of default, because default never happens.

$Y \geq Z$ amounts to

$$
s \leq \hat{s} := \frac{X - Z}{\bar{\tau}} = \frac{R\bar{\tau}(1 - \gamma) - \gamma(R - (1 - h)\xi)}{\bar{\tau}}.
$$

If the potential crisis is benign enough, default does not happen.

(b) $\delta_1 < 1 = \delta_0$. This is the interesting case in which the government finances are sound if the crisis does not materialize, but the tax ceiling will be binding if the crisis does occur, and there will be partial default of the government in that case.

Here, we have $E[\tilde{\delta}] = (1 - p) \cdot 1 + p\delta_1$. The following equations must simultaneously hold,

$$
E[\tilde{\delta}] \frac{X}{Z} \geq 1 = \delta_0,
$$

$$
E[\tilde{\delta}] \frac{Y}{Z} = \delta_1 < 1.
$$

Using the definition of $E[\tilde{\delta}]$ and resolving yields

$$
E[\tilde{\delta}] = \frac{Z - pZ}{Z - pY}.
$$

(B3)

$\delta_1 < 1$ requires $Y < Z$, or equivalently $s > \hat{s}$. $\delta_0 \geq 1$ requires

$$
s \leq \hat{s} := \frac{R\bar{\tau}(1 - \gamma) - \gamma(R - (1 - h)\xi)}{p\bar{\tau}} = \frac{\hat{s}}{p}.
$$

For $s < \hat{s} \leq \hat{\delta}$, case (b) applies, so the crisis must be grave enough ($s > \hat{s}$), but not too grave ($s \leq \hat{s}$). If it is too grave, we enter case (c) below.
Note that \hat{s} and \check{s} increase with $\bar{\tau}$, implying that fiscally less performant governments ($\bar{\tau}$ is smaller) are more vulnerable to even smaller crises. Moreover, the two thresholds also decrease with h, implying that a larger h increases vulnerability of government finance to crises.

(c) $\delta_1 \leq \delta_0 < 1$. This is the situation where the government’s finance is not perfectly safe, even if the crisis does not materialize. The government will not be able to fully repay the bonds in any case. $\delta_0 < 1$ is equivalent to $\hat{s} < s$.

We have $E[\tilde{\delta}] = (1 - p)\delta_0 + p\delta_1$, with

$$
E[\tilde{\delta}]^X_Z = \delta_0 < 1,
$$

$$
E[\tilde{\delta}]^Y_Z = \delta_1 < \delta_0.
$$

This implies

$$
M = \begin{bmatrix}
(1 - p)X - Z & pX \\
(1 - p)Y & pY - Z
\end{bmatrix}
\begin{bmatrix}
\delta_0 \\
\delta_1
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}.
$$

M has full rank unless $s = \hat{s}$. Thus, for $s > \hat{s}$, the only solution is $\delta_0 = \delta_1 = 0$. The equilibrium with a government breaks down. Only autarky is possible.

(d) $E[\tilde{\delta}]$ and the derivatives wrt h in case (b). Inspection of (B3) reveals that $\partial E[\tilde{\delta}] / \partial \bar{\tau} > 0$ and $\partial E[\tilde{\delta}] / \partial h < 0$, as claimed in the main text. The expected recovery rate is smaller, the less performant tax collection is ($\text{smaller } \bar{\tau}$), and the more restrictive the collateral framework of the central bank is ($\text{larger } h$).

LITERATURE CITED

