Blog Post

Artificial intelligence’s great impact on low and middle-skilled jobs

Artificial intelligence and machine learning will significantly transform low-skilled jobs that have not yet been negatively affected by past technological change.

By: and Date: June 29, 2020 Topic: Digital economy and innovation

The academic literature suggests that, in the past decades, technological progress has led to job polarisation in European Union countries. While computer technologies and robots have replaced, to some extent, routine middle-skilled jobs such as machine operation, construction work or administrative work, they have also led to an increase in complementary, non-routine high-skilled jobs (eg managers, professionals) and in low-skilled jobs (eg agriculture, cleaning and personal care services). However, our new research suggests that the new technologies that have emerged since 2010 – artificial intelligence and machine learning – are set to change drastically the job landscape over the next few decades. These technologies are likely to have a deeper impact across a wider range of jobs and tasks, including possible destruction of low-skilled jobs.

(…) new technologies that have emerged since 2010 – artificial intelligence and machine learning – are set to change drastically the job landscape over the next few decades. These technologies are likely to have a deeper impact across a wider range of jobs and tasks, including possible destruction of low-skilled jobs.

Artificial intelligence (AI) systems are able to perform tasks that involve decision-making, therefore changing the impact of automation on the workforce. AI-powered technologies can now retrieve information, coordinate logistics, handle inventories, prepare taxes, provide financial services, translate complex documents, write business reports, prepare legal briefs and diagnose diseases. Moreover, they are set to become much better at these tasks in the next few years thanks to machine learning (ML): computers fed by big data can learn, practice skills and ultimately improve their own performances and perform their assigned tasks more efficiently.

Our new working paper evaluates the ‘probability of automation’ for different jobs, using data from 24 European countries. This probability is initially computed at the job task level and then aggregated at the occupational level (Table 1). Since each job consists of a variety of tasks, with different potential for automation, the probability of automation at the job level does not necessarily mean the destruction of jobs, but rather whether automation can significantly transform the nature of those jobs.

Table 1: European jobs with the highest and lowest probabilities of automation


Source: Brekelmans and Petropoulos (2020) based on Nedelkoska and Quintini (2018).

We use this measure of automation in an aggregate framework where jobs are grouped into three different categories of skill: low, middle and high-skilled jobs. Figure 1 shows the results.

Figure 1: Exposure to automation of different skill groups


Source: Brekelmans and Petropoulos (2020).

These results suggest that artificial intelligence and machine learning will have different impacts compared to computer and robotic technologies, which caused job polarisation (drop in routine middle-skilled jobs and increase in low-skilled jobs). In contrast, AI is highly likely to significantly alter not only middle-skilled jobs, but also low-skill employment. Moreover, while the high skilled are relatively less at risk from AI and ML-induced transformation, its impact is still non-negligible for these jobs.

The results also suggest a future transformation of work. In middle and low-skilled jobs, AI systems will complete the easily automated tasks while humans continue to perform those that cannot be automated. A high probability of automation may also be associated with the creation of new tasks and jobs though the productivity gains from adopting AI technologies, but these jobs and tasks will most likely be high-skilled.

The transformative nature of AI and ML requires proactive measures to re-design labour markets. Countries with high degrees of labour flexibility, high quality science education and less pervasive product market regulations tend to have higher skill-oriented job structures and are therefore less exposed to labour transformation due to automation.

The transformative nature of AI and ML requires proactive measures to re-design labour markets. The workforce needs to be prepared for the upcoming changes, while the efficiency gains from these technologies should be harnessed. Countries with high degrees of labour flexibility, high quality science education and less pervasive product market regulations tend to have higher skill-oriented job structures and are therefore less exposed to labour transformation due to automation.

 

This Blog was produced within the project “Future of Work and Inclusive Growth in Europe“, with the financial support of the Mastercard Center for Inclusive Growth. 

Recommended citation
Brekelmans S., G. Petropoulos (2020), ‘Artificial intelligence’s great impact on low and middle-skilled jobs’, Bruegel Blog, 29 June, available at https://www.bruegel.org/2020/06/artificial-intelligences-great-impact-on-low-and-middle-skilled-jobs/


Republishing and referencing

Bruegel considers itself a public good and takes no institutional standpoint. Anyone is free to republish and/or quote this post without prior consent. Please provide a full reference, clearly stating Bruegel and the relevant author as the source, and include a prominent hyperlink to the original post.

Read article Download PDF More on this topic
 

Working Paper

Market power and artificial intelligence work on online labour markets

In this working paper, the authors investigate three alternative but complementary indicators of market power on one of the largest online labour markets (OLMs) in Europe.

By: Néstor Duch-Brown, Estrella Gomez-Herrera, Frank Mueller-Langer and Songül Tolan Topic: Digital economy and innovation Date: December 16, 2021
Read about event
 

Past Event

Past Event

Future of work and inclusive growth: Digital dialogues

An end of year series of digital discussions on the Future of Work and Inclusive Growth in Europe.

Speakers: Janine Berg, Arturo Franco, Stijn Broecke, Esther Lynch, Mario Mariniello, Laura Nurski, Leah Ruppanner, Nicolas Schmit, Kim Van Sparrentak and Tilman Tacke Topic: Digital economy and innovation, Inclusive growth Location: Bruegel, Rue de la Charité 33, 1210 Brussels Date: December 7, 2021
Read article More by this author
 

Blog Post

Inclusive growth

An inclusive European Union must boost gig workers’ rights

A European initiative strengthening rights for gig workers is welcome. A digitised economy should also be inclusive.

By: Mario Mariniello Topic: Digital economy and innovation, Inclusive growth Date: December 7, 2021
Read article
 

Blog Post

Inclusive growth

The triple constraint on artificial-intelligence advancement in Europe

Skills, data and financing shortcomings constrain artificial-intelligence innovation in Europe.

By: Mia Hoffmann and Laura Nurski Topic: Digital economy and innovation, Inclusive growth Date: December 6, 2021
Read article Download PDF More on this topic
 

Policy Contribution

What is holding back artificial intelligence adoption in Europe?

To accelerate the roll-out of AI technology across the European Union, policymakers should alleviate constraints to adoption faced by firms, both in the environmental context and in the technological context.

By: Mia Hoffmann and Laura Nurski Topic: Digital economy and innovation Date: November 30, 2021
Read article More by this author
 

Podcast

Podcast

Technology: a product of unequal power?

The effects of digital technology on work and wages.

By: The Sound of Economics Topic: Digital economy and innovation, Inclusive growth Date: November 24, 2021
Read article Download PDF
 

Policy Contribution

Inclusive growth

Biometric technologies at work: a proposed use-based taxonomy

Technology may not have a significant negative impact on the quantity of jobs available to humans, but it certainly transforms them, changing how jobs are performed, with implications for workers’ quality of life and for productivity. Hence the focus shifts from a quantitative to a qualitative perspective.

By: Mario Mariniello and Mia Hoffmann Topic: Digital economy and innovation, Inclusive growth Date: November 17, 2021
Read about event More on this topic
 

Past Event

Past Event

Phasing out COVID-19 emergency support programmes: effects on productivity and financial stability

How can European countries phase out the COVID-19 support measures without having a negative impact on productivity and financial stability?

Speakers: Eric Bartelsman, Maria Demertzis, Peter Grasmann and Laurie Mayers Topic: Macroeconomic policy Date: November 9, 2021
Read article
 

Blog Post

Inclusive growth

Concentration of artificial intelligence and other frontier IT skills

Online job postings indicate that demand from top tech firms for frontier IT skills is about double their demand for other IT skills. This could indicate increasing concentration of skills in a few firms, with other firms left behind.

By: Wang Jin, Georgios Petropoulos and Sebastian Steffen Topic: Digital economy and innovation, Inclusive growth Date: October 21, 2021
Read article More by this author
 

Blog Post

Inclusive growth

Making antitrust work for, not against, gig workers and the self-employed

Policymakers should act to deal with labour-market concentration trends that potentially harm workers, especially gig workers and the self-employed.

By: Georgios Petropoulos Topic: Digital economy and innovation, Inclusive growth Date: October 11, 2021
Read article
 

Blog Post

Inclusive growth

Remote work, EU labour markets and wage inequality

More remote working in the wake of the pandemic could exacerbate wage inequality, with young workers, women and the low educated potentially losing out.

By: Georgios Petropoulos and Tom Schraepen Topic: Digital economy and innovation, Inclusive growth Date: September 14, 2021
Read article More by this author
 

Blog Post

Inclusive growth

Designing a hybrid work organisation

Post-pandemic hybrid work models should be carefully planned, taking into account individual and organisational needs.

By: Laura Nurski Topic: Digital economy and innovation, Inclusive growth Date: July 5, 2021
Load more posts